AN EFFECTLESS CUTTING OF A VIBRATING MEMBRANE

H. F. WEINBERGER

Let G be a multiply connected domain bounded by an outer boundary Γ_0 , inner boundaries $\Gamma_1, \Gamma_2, \cdots$, and possibly some other inner boundaries $\gamma_1, \gamma_2, \cdots$. Let u be the eigenfunction corresponding to the lowest eigenvalue λ_1 of the membrane problem

(1)
$$\Delta u + \lambda_1 u = 0 \quad \text{in } G$$

with

(2)
$$u = 0 \text{ on } \Gamma_0, \Gamma_1, \cdots$$

 $\frac{\partial u}{\partial n} = 0 \text{ on } \gamma_1, \gamma_2, \cdots.$

We shall show that there exists a cut $\tilde{\gamma}$ consisting of a finite set of analytic arcs along which $(\partial u/\partial n) = 0$ which separates any given one of the fixed holes, say Γ_1 , from the outer boundary Γ_0 and the other holes $\Gamma_2, \Gamma_3, \cdots$. This means that the membrane G may be cut in two along $\tilde{\gamma}$ without lowering its lowest eigenvalue. This fact is used in the preceding paper of J. Hersch to establish an upper bound for λ_1 .

We assume that $\Gamma_0, \Gamma_1, \cdots$ have continuous normals and that $\gamma_1, \gamma_2, \cdots$ are analytic. Then it is well-known that u has the following properties:

- (3) (a) u > 0 in G, and $\frac{\partial u}{\partial n} < 0$ on $\Gamma_0, \Gamma_1, \cdots$.
 - (b) u is analytic in $G + \gamma_1 + \gamma_2 + \cdots$.
 - (c) u_{xx} and u_{yy} do not vanish simultaneously.

(The last property follows from (3a) and (1)).

We define G_1 to be the set of points of G from which the fall lines, i.e. the trajectories of

$$(4) \qquad \qquad \frac{dx}{dt} = -u_x$$
$$\frac{dy}{dt} = -u_y$$

reach Γ_1 . By property (3a) G_1 contains a neighborhood in G of Γ_1 , and its exterior contains neighborhoods in G of $\Gamma_0, \Gamma_2, \cdots$. Since u_x

Received August 23, 1962. Prepared under Contract Nonr 710 (16) between the Office of Naval Research and the University of Minnesota.