THE METHOD OF INTERIOR PARALLELS APPLIED TO POLYGONAL OR MULTIPLY CONNECTED MEMBRANES

JOSEPH HERSCH

1. Introduction.

1.1. The scope of this paper is (a) to discuss the possibilities of the method of interior parallels (*Makai*, *Pólya*, *Payne-Weinberger*) by considering the case of polygonal membranes (§ 2); (b) to extend it to multiply connected domains in a more satisfactory manner than has hitherto been proposed (§ 3); to this end we use a result of H. F. Weinberger [7] on the existence of an "effectless cut", published immediately after the present paper.

1.2. We consider the problem of a vibrating membrane covering a plane domain G and fixed along the boundary Γ . We are interested in the first eigenvalue λ_1 of the problem $\Delta u + \lambda u = 0$ in G, u = 0along Γ ; by Rayleigh's principle,

$$\lambda_1 \leq R[v] \equiv rac{D(v)}{\iint_\sigma v^2 dA} \quad ext{ if } v = 0 ext{ along } arGamma \ .$$

dA = dxdy is the element of area; $D(v) = \iint_{\sigma} grad^2v dA$, Dirichlet's integral; R[v], Rayleigh's quotient.

The method of interior parallels consists in using trial functions v whose level lines are parallel to Γ . It was first introduced by E. Makai [2, 3]: using the trial function $v(Q) = \delta_{qr}$ ($Q \in G$, δ = Euclidean distance), he obtained, for every simply or doubly connected membrane G of area A, fixed along its boundary Γ of total length L_r , the bound

$$(1)$$
 $\lambda_1 \leq 3rac{L^2_{arGamma}}{A^2}$.

His proof makes use of B. Sz.-Nagy's [6] inequality

$$(2) q(\delta) \leq L_{\Gamma}$$

bounding the total length $q(\delta)$ of the "interior parallel at distance δ " in a simply or doubly connected domain; as Sz.-Nagy proved, this length exists for almost all values of δ .

Received August 23, 1962.