SEMIGROUPS OF MATRICES DEFINING LINKED OPERATORS WITH DIFFERENT SPECTRA

Charles J. A. Halberg, Jr.

1. Introduction. The concept of "linked operators" was introduced by A. E. Taylor and the author in [1]. This concept was originally suggested by work involving bounded linear operators on the sequence spaces l_{p}. For example, if the infinite matrix ($t_{i j}$) defines operators T_{p} and T_{q} that are bounded on l_{p} and l_{q}, respectively, then these operators are linked. The somewhat complicated general definition of linked operators is deferred until $\S 2$ of this paper. In [1] an isolated, specific example of linked operators with different spectra was given. The purpose of this paper is to exhibit three infinite semigroups of infinite matrices $\left(t_{i j}\right)$, with complex coefficients, such that each of their elements defines linked operators with different spectra.

In the next section we give some preliminary definitions and notation and in the final section we prove a basic lemma and our principal theorems.
2. Preliminary definitions and notation. We first give the definition of linked operators.

Definition. Let X, Y be complex linear spaces, and Z a non-void complex linear space contained in both X and Y. Let X be a Banach. space X_{1}, Y a Banach space Y_{2} under the norms n_{1}, n_{2} respectively. Let Z be a Banach space Z_{N} under the norm N defined by $N(z)=$ $\max \left[n_{1}(z), n_{2}(z)\right]$. With the usual uniform norms let T_{1}, T_{2} be bounded linear operators on X_{1}, Y_{2} respectively, such that $T_{1} z=T_{2} z \in Z$ when $z \in Z$. Operators satisfying these conditions are said to be "linked."

Our basic notation will be as follows: If T denotes the infinite matrix ($\mathrm{t}_{i j}$), with complex coefficients, then T^{t} will denote its transpose, and \bar{T} the matrix $\left(\bar{t}_{i j}\right)$, where \bar{z} is the complex conjugate of z. Let T_{p} denote the operator defined on l_{p} by the matrix $T,\left\|T_{p}\right\|$ its norm, and $\left[l_{p}\right]$ the algebra of bounded linear operators on l_{p}. Also let $\rho\left(T_{p}\right)$ denote the resolvent set of T_{p}, consisting of all complex λ such that $\lambda I-T_{p}$ defines a one-to-one correspondence of l_{p} onto $l_{p} ; \sigma\left(T_{p}\right)$ denote the spectrum of T_{p}, consisting of all λ not in $\rho\left(T_{p}\right)$; and $\left|\sigma\left(T_{p}\right)\right|$ the spectral radius of T_{p}.

The matrix ($t_{i j}$) is said to be "regular" in case for every convergent sequence $\left[\zeta_{n}\right], \lim _{n \rightarrow \infty} \zeta_{n}=\zeta$, each of the series $\sum_{k=1}^{\infty} t_{i k} \zeta_{k}$ is convergent

[^0]
[^0]: Received December 6, 1962. Part of the work done on this paper was carried on while the author was an NSF Fellow, visiting at the University of Copenhagen, Denmark.

