A REMARK ON ANALYTICITY OF FUNCTION ALGEBRAS

I. Glicksberg

1. Let A be a closed separating subalgebra of $C(X), X$ compact, with maximal ideal space \mathfrak{M}_{Δ} and Šilov boundary ∂_{A}. Naturally A can also be viewed as a closed subalgebra of $C\left(\mathfrak{M}_{A}\right)$ or $C\left(\partial_{A}\right)$.

Call A analytic on X if the vanishing of $f \in A$ on a non-void open subset of X implies $f \equiv 0$, or simply analytic if this holds for $X=$ \mathfrak{M}_{A}. Recently Kenneth Hoffman asked if the analyticity of A on ∂_{Δ} implied analyticity on \mathfrak{M}_{A}; the present note is devoted to a counterexample. ${ }^{1}$ Evidently such an example, analytic on its Šilov boundary, must be an integral domain, so our algebra is a non-analytic integral domain.

The example was suggested by, and utilizes, an interpolation theorem of Rudin and Carleson [5, 9], recently generalized by Bishop [3], which in fact permits the construction of a variety of unfamiliar tractable subalgebras of familiar algebras; consequently we shall discuss the construction in more generality than is absolutely necessary. Finally we give a slightly more complicated example which is also dirichlet.

Notation. $\quad M(X)$ will denote the space of (finite complex regular Borel) measures μ on X; for such a μ, μ is orthogonal to $A(\mu \perp A)$ if $\mu(f)=\int f d \mu=0, f$ in A. And μ_{F} will denote the usual restriction of μ to $F \subset X$, while $f \mid F$ will be the restriction of a function $f, A \mid F$ the set $\{f \mid F: f \in A\}$. An algebra A will always be assumed to contain the constants.
2. Our construction is based on the following fact.
(2.1) Suppose F is a closed subset of X, and $\mu_{F}=0$ for all μ in $M(X)$ orthogonal to A. Then ${ }^{2}$

$$
\begin{equation*}
A \mid F=C(F)[3] \tag{2.1.1}
\end{equation*}
$$

(2.1.2) if X is metric, F is a peak set of A, i.e., there is an f in

[^0]
[^0]: Received January 7, 1963. Supported in part by the National Science Foundation through Grant G22052 and in part by the Air Force Office of Scientific Research.
 ${ }^{1}$ After this note was completed, I found that analyticity of A on \Re_{A} implies analyticity on ∂_{A}; this will appear in a subsequent paper.
 ${ }^{2}$ (2.11) is Bishop's generalization of the Rudin-Carleson result mentioned before, which applies to the special case in which A is the "disc algebra" and F a subset of measure zero of the unit circle. (2.12) will actually be avoided in the specific examples we construct.

