A REMARK ON ANALYTICITY OF FUNCTION ALGEBRAS

I. GLICKSBERG

1. Let A be a closed separating subalgebra of C(X), X compact, with maximal ideal space \mathfrak{M}_A and Šilov boundary ∂_A . Naturally A can also be viewed as a closed subalgebra of $C(\mathfrak{M}_A)$ or $C(\partial_A)$.

Call A analytic on X if the vanishing of $f \in A$ on a non-void open subset of X implies $f \equiv 0$, or simply analytic if this holds for $X = \mathfrak{M}_A$. Recently Kenneth Hoffman asked if the analyticity of A on ∂_A implied analyticity on \mathfrak{M}_A ; the present note is devoted to a counter-example. Evidently such an example, analytic on its Šilov boundary, must be an integral domain, so our algebra is a non-analytic integral domain.

The example was suggested by, and utilizes, an interpolation theorem of Rudin and Carleson [5, 9], recently generalized by Bishop [3], which in fact permits the construction of a variety of unfamiliar tractable subalgebras of familiar algebras; consequently we shall discuss the construction in more generality than is absolutely necessary. Finally we give a slightly more complicated example which is also dirichlet.

NOTATION. M(X) will denote the space of (finite complex regular Borel) measures μ on X; for such a μ , μ is orthogonal to $A(\mu \perp A)$ if $\mu(f) = \int f d\mu = 0$, f in A. And μ_F will denote the usual restriction of μ to $F \subset X$, while $f \mid F$ will be the restriction of a function f, $A \mid F$ the set $\{f \mid F: f \in A\}$. An algebra A will always be assumed to contain the constants.

- 2. Our construction is based on the following fact.
- (2.1) Suppose F is a closed subset of X, and $\mu_{\scriptscriptstyle F}=0$ for all μ in M(X) orthogonal to A. Then
- $(2.1.1) A \mid F = C(F) [3]$
- (2.1.2) if X is metric, F is a peak set of A, i.e., there is an f in

Received January 7, 1963. Supported in part by the National Science Foundation through Grant G22052 and in part by the Air Force Office of Scientific Research.

¹ After this note was completed, I found that analyticity of A on \mathfrak{M}_A implies analyticity on ∂_A ; this will appear in a subsequent paper.

 $^{^2}$ (2.11) is Bishop's generalization of the Rudin-Carleson result mentioned before, which applies to the special case in which A is the "disc algebra" and F a subset of measure zero of the unit circle. (2.12) will actually be avoided in the specific examples we construct.