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1. Introduction, Suppose Z is an additive abelian group with
additive identity element N and a "norm" 11 11 such that \\N\\ = 0,
and if z, w e Z, then | |z + w || ^ | |z || + || w ||, || —z \\ = \\z ||, and | |z \\ > 0
unless z = N. Suppose furthermore that Z is complete with respect
to the metric induced by this norm. Let B denote the set of all
transformations from Z into Z. Suppose [α, b] is a closed number
interval, Ae Z, and each of F and G is a function from [a, b] into B.

Under suitable restrictions on F and G, we wish to find a function
Y from [α, b] into ^ satisfying the integral equation

(1.1) Y(x) = A + [dG-FY,
Ja

where FY denotes the function from [a, b] into Z defined by [FY](x) =
F(x)Y(x). Notice that parentheses are used in denoting the image
of a number, but not in denoting the image of an element of B. We
wish to express a solution of (1.1) as a product integral

(1.2) Y(x) = K(l + dG F)A .

The terms "integral" and "product integral" will be defined in the
next section, but the notation is quite suggestive, taking lz = z for
zeZ.

A related problem has been treated by J. W. Neuberger [1]. Let
us perform a "change of variable." That is, let R denote the function
from [α, 6] into B defined by R{x)z — \ dG Fz, where Fz denotes
the function from [α, b] into Z defined by [Fz](x) = F{x)z. Then (1.1)
becomes, at least formally

(1.3) Y{x) = A+ \dR. Y.
Ja

Under suitable restrictions, Neuberger expresses solutions of (1.3) as
the product integral

(1.4) Y(x) = πl(l + dR)A ,

or, in Neuberger's notation

Y(x) = βπ (Γ, A) , T(p, q) = l + R(p) - R(q) .
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