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1. Introduction* Let 31 and 35 be Banach algebras and v a
homomorphism of 31 into 93. This paper is a study of the continuity
properties of v which depend only on the structure of SI; 33 is completely
arbitrary. The algebras considered are non-commutative.

If v is a homomorphism of SI into 93, then the function \x\ —
\\v(x) |(, xe 21, is a multiplicative semi-norm on SI. Conversely, every
multiplicative semi-norm on 21 arises from a homomorphism in this
way. Thus all results on continuity of homomorphisms can be stated
in terms of multiplicative semi-norms.

Section 2 contains material concerning units in SI and 93 and the
relation between homomorphisms and multiplicative semi-norms.

Section 3 is devoted to the proof of the main technical device of
the paper: If {gn} and {fn} are sequences in SI with gngm — 0,n Φ m,
and fngm = 0, n Φ m, then, under any homomorphism v of SI into a
Banach algebra 93, the sequence {|| v{fngn) | |/ | |/n || \\gn 11} is bounded.

In § 4 the separating ideals for v in SI and 93 are defined and
several of their properties are exhibited. The separating ideal S^ for
v in SI is the set of x in SI for which there is a sequence {xn} in 31
with xn —> 0 and v(xn) —» v(x). An application of the main boundedness
theorem (Theorem 3.1) shows that if {xn} is a sequence in Sf with
xnxm = 0, n Φ m, then v(xnf — 0 for all but a finite number of n.

In § 5 we restrict attention to the case in which v is an iso-
morphism and SI is a B* algebra. In this case £f is the zero ideal.
This fact enables us to show that there is a constant M such that
II x II ^ M\\ v(x) ||, x G SI. This result is analogous to an important
theorem of Kaplansky [4]: any multiplicative norm on the algebra of
continuous functions vanishing at infinity on a locally compact Haus-
dorff space majorizes the supremum norm. A theorem due to Bonsall
[2] implies the following similar result: if ( | is a multiplicative norm
on the algebra 31 of bounded operators on a Banach space, there is a
constant β such that for TeSI, || Γ | | g β \ Γ|, where || || is the usual
operator norm. Although our result is similar, our approach is quite
different. Kaplansky's proof depends heavily on commutativity; Bon-
salΓs on the existence of nonzero finite dimensional operators which,
of course, are not necessarily present in an arbitrary J3* algebra
Notice that if 31 is a Banach algebra with the property that for every
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