ON THE SPECTRUM OF A TOEPLITZ OPERATOR

HAROLD WIDOM

Given a function $\phi \in L_{\infty}(-\pi, \pi)$, the Toeplitz operator T_{ϕ} is the operator on H_2 (the set of $f \in L_2$ with Fourier series of the form $\sum_{0}^{\infty} c_n e^{in\theta}$) which consists of multiplication by ϕ followed by P, the natural projection of L_2 onto H_2 : if $f \sim \sum_{-\infty}^{\infty} c_n e^{in\theta}$ then $Pf \sim \sum_{0}^{\infty} c_n e^{in\theta}$. Succinctly,

$$T_{\phi}f = P(\phi f) \qquad \qquad f \in H_2.$$

In [5] a necessary and sufficient condition on ϕ was given for the invertibility of T_{ϕ} . This will be stated below. (The paper [5] is needlessly complicated. In a recent paper of Devinatz [1], however, all results of [5] and more are proved without undue complication in a general Dirichlet algebra setting.) Halmos [2] has posed the following as a test question for any theory of invertibility of Toeplitz operators: Is the spectrum of a Toeplitz operator necessarily connected? We shall shown here that the answer is Yes.

The proof consists mainly of applications of Theorem I of [5], which says the following.

A necessary and sufficient condition for the invertibility of T_{ϕ} is the existence of function ϕ_+ and ϕ_- belonging respectively to H_2 and \overline{H}_2 (the set of complex conjugates of H_2 functions) such that

(a) $\phi = \phi_+ \phi_-$,

(b) $\phi_{+}^{-1} \in H_2$ and $\phi_{-}^{-1} \in \overline{H}_2$,

(c) for $f \in L_{\infty}$, $Sf = \phi_{+}^{-1}P\phi_{-}^{-1}f \in L_2$, and $f \to Sf$ extends to a bounded operator on L_2 .

We don't want to prove the theorem here but we do have to say where the functions ϕ_{\pm} come from under the assumption that T_{ϕ} is ivertible. If we set

$$\psi_{+}=\,T_{\,\phi}^{_{-1}}$$
1, $\,ar{\psi}_{-}=\,T_{\,\phi}^{*-1}$ 1

then it can be shown that $\phi \psi_+ \psi_- = c$, a constant. We must have $c \neq 0$ since ψ_{\pm} can vanish only on sets of measure zero and ϕ is not identically zero. One then defines

$$\phi_+=1/\psi_+,~~\phi_-=c/\psi_-$$

and (a) and (b) hold.

As for the relevance of condition (c), it turns out that the ex-Received April 15, 1963. Sloan Foundation fellow.