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1. Introduction* In a previous paper [3], the author has presented
the basic concepts and definitions for semi-discrete analytic functions.
These functions are defined on two types of semi-lattices (sets of lines
in the #?/-plane, parallel to the #-axis)—one of which leads to a sym-
metric theory. We will concern ourselves here only with the sym-
metric case. These functions satisfy the following defining equation
[3] on a region of the semi-lattice

(1.1) OψL = [f(z + ihl2) - f(z -
uX

where h > 0 is the spacing of the semi-lattice. For convenience, we
will repeat the definition of the symmetric semi-lattice and its as-
sociated odd and even semi-lattices. A grid-line, αm, is the set of
points in the xy-plane such that y = mh where h > 0. The union
G(2k, h) of the am for m = k (k = 0, ± 1 , ±2, •) is called the even
semi-lattice; the union G(2k + 1, h) of the am for m = (2k + l)/2 is
called the odd semi-lattice. The semi-discrete 2-plane is the union of
G(2k,h) and G(2k + l,h). It will be denoted by L(h). Additional
concepts such as domains, paths, path-integrals, etc., are defined in [3].
The following notational conventions will be employed:

(1.2) fk=f(x +

and the abbreviation SD will be used to stand for semi-discrete.

2 Sub and super harmonic semirdiscrete functions* In the
continuous case, it is well-known that if a function u(x, y) is defined
over a region R of the plane and if, further, Δ\u) ^ 0 for all (x, y) e R,
where A2 denotes the two dimensional Laplacian; then u(xf y) cannot
have a maximum on the interior of R. Such a function is said to be
sub-harmonic in R [2]. Similarly, if the function u(x, y) defined on
R satisfies the equation Δ\u) ^ 0 for all (x,y)e R; then u(x, y) cannot
have a minimum on the interior of R. Such a function is said to be
super-harmonic in R [2]. An analogous result holds for semi-discrete
functions which are defined on domains of either the even or odd semi-
lattice. To be specific, we will consider functions u(x, y) defined on
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