EXTREME EIGEN VALUES OF TOEPLITZ FORMS ASSOCIATED WITH JACOBI POLYNOMIALS

I. I. HIRSCHMAN, JR.

Introduction. Let $t(\theta)$ be a real function in $L^1(T)$ where T is the real numbers modulo 1, and let

$$egin{aligned} c(k) &= \int_{T} t(heta) e^{-2\pi i k heta} d heta & k = 0,\,1,\,\cdots, , \ C_n &= [c(j-k)]_{j,\,k=0,\,\cdots,n} \ . \end{aligned}$$

 C_n is the Toeplitz matrix of index *n* associated with $t(\theta)$. C_n is clearly Hermitian and thus has real eigen values,

$$\lambda_{n,1} \geq \lambda_{n,2} \geq \cdots \geq \lambda_{n,n+1}$$
.

For some time studies have been made of the asymptotic behaviour of these eigen values as $n \to \infty$. Thus, for example, if N(a, b; n) is, for *n* fixed, the number of $\lambda_{n,k}$'s which satisfy $a \leq \lambda_{n,k} \leq b$, and if $\nu(y)$ is the Lebesgue measure of the set $\{\theta \mid t(\theta) < y\}$ then

(1)
$$\lim_{n \to \infty} n^{-1} N(a, b; n) = \nu(a) - \nu(b) ,$$

provided a and b are points of continuity of ν . This result was proved by Szegö, see [2; p. 64]. Detailed investigations have also been made of the behaviour of $\lambda_{n,k}$ as $n \to \infty$ while k is fixed, under various additional assumptions on $t(\theta)$. Suppose that $t(\theta)$ is continuous for $\theta \in T$, has a unique absolute maximum at $\theta = 0$, and that $t(\theta)$ is twice continuously differentiable in a neighborhood of $\theta = 0$ with t''(0) < 0.

It was shown in 1953 by Kac, Murdock, and Szegö that under these assumptions

Received May 10, 1963. Research supported in part by the National Science Foundation under Grant No. G-24834.