LINEAR TRANSFORMATIONS ON GRASSMANN SPACES

R. WESTWICK

1. Let U denote an n -dimensional vector space over an algebraically closed field F , and let G_{nr} denote the set of nonzero pure r -vectors of the Grassmann product space $\bigwedge^r U$. Let T be a linear transformation of $\bigwedge^r U$ which sends G_{nr} into G_{nr} . In this note we prove that T is nonsingular, and then, by using the results of Wei-Liang Chow in [1], we determine the structure of *T.*

For each $z = x_1 \wedge \cdots \wedge x_r \in G_{nr}$, we let [*z*] denote the *r*-dimensional subspace of U spanned by the vectors x_1, \ldots, x_r . By Lemma 5 of [1], two independent elements z_1 and z_2 of G_{nr} span a subspace all of whose nonzero elements are in G_{nr} if and only if $\dim \left(\left[z_1 \right] \cap \left[z_2 \right] \right) = r - 1$; that is, if and only if $[z_1]$ and $[z_2]$ are adjacent. If $V \subseteq \bigwedge^r U$ is a subspace such that each nonzero vector in V is in G_{nr} and if V is maximal (that is, not contained in a larger such subspace) then $\{[z] \mid z \in V, z \neq 0\}$ is a maximal set of pairwise adjacent r-dimensional subspaces of *U.* These sets of subspaces are of two types; namely, the set of all r-dimensional subspaces of U containing a common $(r-1)$ -dimensional subspace, and the set of all r-dimensional subspaces of an $(r + 1)$ dimensional subspace of *U.* We adopt the usual convention of calling these sets of subspaces maximal sets of the first and second kind respectively. We will let A_r denote the set of those maximal V which determine a set of pairwise adjacint subspaces of the first kind, and we will let B_r denote the set of those maximal V which determine a set of pairwise adjacent subspaces of the second kind.

2. In this section we prove that if T sends each member of B_r into a member of *B^r* then *T* is nonsingular.

Let U_1, \dots, U_t be *k*-dimensional pairwise adjacent subspaces of U and let $z_i \in G_{nk}$ be such that $[z_i] = U_i$ for $i = 1, \dots, t$. Then $\{U_1, \dots, U_t\}$ is said to be independent if and only if $\{z_1, \dots, z_t\}$ is an independent subset of $\bigwedge^k U$. We note the following facts concerning an independent set $\{U_1, \dots, U_t\}$. If it is of the first kind (in the sense of the previous $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}, \mathbf{y}_1, \ldots, \mathbf{y}_k$ of *U* such that for $i = 1, \dots, t$, $U_i = \langle x_1, \dots, x_{k-1}, y_i \rangle \cdot \langle \dots \rangle$ denotes the linear subspace spanned by the vectors enclosed. If it is of the second kind, then there is an independent set of vectors $\{x_1, \dots, x_{k+1}\}$ $\text{such that} \ \ U_i = \langle x_1, \, \cdots, \, x_{i-1}, \, x_{i+1}, \, \cdots, \, x_{k+1} \rangle, \ \text{for} \ \ i = 1, \, \cdots, \, t. \ \ \text{It is easily}$

Received July 2, 1963. The author is indebted to M. Marcus for his encouragement and help.