BOUNDED GENERALIZED ANALYTIC FUNCTIONS ON THE TORUS

VICTOR L. SHAPIRO

1. Introduction. We shall operate in Euclidean k-space, E_k , $k \ge 2$, and use the following notation:

$$egin{aligned} &x=(x_1,\,\cdots,\,x_k)\ ; &y=(y_1,\,\cdots,\,y_k)\ ;\ &lpha x+eta y=(lpha x_1+eta y_1,\,\cdots,\,lpha x_k+eta y_k)\ ;\ &(x,\,y)=x_1y_1+\cdots+x_ky_k\ ; &|x|=(x,\,x)^{1/2}\ . \end{aligned}$$

 T_k will designate the k-dimensional torus $\{x; -\pi < x_j \le \pi, j = 1, \dots, k\}$, v will always designate a point a distance one from the origin, i.e., |v| = 1, and m will always designate an integral lattice point. If f is in L^1 on T_k , then $\hat{f}(m)$ will designate the mth Fourier coefficient of f, i.e., $(2\pi)^{-k} \int_{T_k} f(x) e^{-i(m,x)} dx$.

We shall say that f(x) in L^1 on T_k is a generalized analytic function on T_k if there exists v such that f is in A_v , where $A_v = A_v^+ \cup A_{-v}^+$, and A_v^+ is defined as follows:

f is in A_v^+ if there exists an m_0 such that if $m \neq m_0$ and $(m - m_0, v) \leq 0$, then $\hat{f}(m) = 0$.

We shall say that f(x) in L^1 on T_k is a strictly generalized anaic function on T_k if there exists a v such that f is in B_v , where $B_v = B_v^+ \cup B_{-v}^+$, and B_v^+ is defined as follows:

 $f \text{ is in } B_v^+ \text{ if there exists an } m_0 \text{ and } a \gamma \text{ with } 0 < \gamma < 1 \text{ such that if } (m - m_0, v) < \gamma | m - m_0 |$, then $\widehat{f}(m) = 0$.

It is quite clear that $B_v \subset A_v$. In this paper, we shall obtain a result which is false for bounded functions in A_v but which is true for bounded functions in B_v . It is primarily with the class B_v and its extension to finite complex measures that the classical paper of Bochner [2, p. 718] is concerned. On T_k , it is essentially with the class A_v that the papers of Helson and Lowdenslager [5], [6], and de Leeuw and Glicksberg [4] are concerned.

We shall be concerned in this paper with a class of functions C_v which for bounded functions is intermediate between the two classes B_v and A_v .

We first note that if f is in B_v^+ , then $\sum_m |\hat{f}(m)| e^{(m,v)\sigma} < \infty$ for every $\sigma < 0$. For with $||f||_p$, $1 \leq p \leq \infty$, designating the L^p -norm of f on T_k , we see that there exists a γ with $0 < \gamma < 1$ and an m_0 such that

Received October 8, 1963. This research was supported by the Air Force Office of Scientific Research.