BOUNDED GENERALIZED ANALYTIC FUNCTIONS ON THE TORUS

VICTOR L. SHAPIRO

1. Introduction. We shall operate in Euclidean k -space, E_k , $k \geq 2$, and use the following notation:

$$
x = (x_1, \dots, x_k); \qquad y = (y_1, \dots, y_k);
$$

\n
$$
\alpha x + \beta y = (\alpha x_1 + \beta y_1, \dots, \alpha x_k + \beta y_k);
$$

\n
$$
(x, y) = x_1 y_1 + \dots + x_k y_k; \qquad |x| = (x, x)^{1/2}.
$$

T_k will designate the k-dimensional torus ${x; -\pi < x_j \leq \pi, j=$ $1, \dots, k$, v will always designate a point a distance one from the origin, i.e., $|v|=1$, and m will always designate an integral lattice point. If f is in L^1 on T_{k_1} then $\hat{f}(m)$ will designate the mth Fourier coefficient of f, i.e., $(2\pi)^{-k}$ | $f(x)e^{-i(m,x)}dx$.

JT^k We shall say that $f(x)$ in L^2 on I_k is a generalized analytic function T^T if there exists a such that f is in A , where $A = A^+ \cup A^+$ tion on I_k if there exists *v* such that *f* is in A_v , where $A_v = A_v \cup A_{-v}$, and A^+ is defined as follows: and *At* is defined as follows:

j is in A_i if there exists an m_0 such that if $m \neq m_0$ and $m_0 \geq 0$ than $\hat{f}(m) = 0$

 $(m - m_0, v) \geq 0$, then $J(m) = 0$.
We shall say that $f(x)$ in I We shall say that $f(x)$ in L^2 on I_k is a strictly generalized ana
 $f(x)$ is L^2 is the second that $f(x)$ is D when $\frac{1}{k}$ *λc* function on I_k
 $-P_{k+1}P_{k}$ and if there exists a v such that j is in D_v , where $\Delta_{\theta} = D_{\theta}$ U $D_{-\theta}$, and D_{θ} is defined as follows:

⁺ if there exists an m_0 and $a \gamma$ with $0 < \gamma < 1$ such J is in D_v if there exists an m_0
if $(m - m_0) \leq \alpha | m - m_0| + \alpha$ that if $(m - m_0, v) \leq 7 | m - m_0|$, then $f(m) = 0$.
It is quite clear that $P \subset A$. In this paper , v) \lt 1 | $m - m_0$
aloon that $P \subset$

It is quite clear that $B_v \subseteq A_v$. In this paper, we shall obtain a result which is false for bounded functions in A_v but which is true for bounded functions in D_v . It is primarily with the class D_v and its
ortension to finite complex measures that the classical paper of Bochnor extension to finite complex measures that the classical paper of Bochner [2, p. 718] is concerned. On T_k , it is essentially with the class A_n $[2, 0, 10]$ is concerned. On I_k , it is essentially with the class A_v
that the papers of Helsen and Leudenslager [5] [6] and de Leeuw that the papers of Helson and Lowdenslager [5], [6], and de Leeuw and Glicksberg [4] are concerned.

We shall be concerned in this paper with a class of functions C_v which for bounded functions is intermediate between the two classes B_n and A_n . B_v and A_v .

We first note that if f is in B_v , then $\sum_m |f(m)| e^{imx} < \infty$ for $\sigma < 0$. For with $||f|| = 1 < \sigma < \infty$ designating the *I*^p-narm of every $\sigma < \sigma$. For with $||f||_p$, $1 \ge p \ge \infty$, designating the Z¹-norm of f on T_k , we see that there exists a γ with $0 < \gamma < 1$ and an m_0 such that that

Received October 8, 1963. This research was supported by the Air Force Office of Scientific Research.