ON COVERINGS

J. Schönheim

1. Introduction. Recently [2, 3, 4, 5] renewed interest has been aroused in the notion of covering and related problems, originally posed by Steiner [8] and later reformulated by Moore [6] as problems of the existence of *tactical configurations*.

A tactical configuration $C(k, l, \lambda, n)$ $(n \ge k \ge l)$ is a set of unordered k-tuples of n different elements, such that each *l*-tuple of these elements appears exactly λ times.

In view of the importance of the special cases $\lambda = 1$ and l = 2the notions of *tactical systems* S(k, l, n) for C(k, l, 1, n) and balanced incomplete block designs (BIBD) $B(k, \lambda, n)$ for $C(k, 2, \lambda, n)$ have also been used.

A necessary condition [6] for the existence of a tactical configuration $C(k, l, \lambda, n)$ is known to be

(1)
$$\lambda \binom{n-h}{l-h} / \binom{k-h}{l-h} = ext{integer}$$
, $h = 0, 1, \dots, l-1$.

For h = 0 this integer, namely

(2)
$$\lambda \binom{n}{l} / \binom{k}{l}$$

is clearly the number of elements in $C(k, l, \lambda, n)$.

Condition (1) has been proved to be sufficient for l = 2, k = 3, $\lambda = 1$ by Moore [6] and Reiss [7], for l = 2, k = 3, $\lambda = 2$ by Bose [1], for l = 2, k = 3 and k = 4 and every λ , for l = 2, k = 5 $\lambda = 1, 4$ and 20, and for l = 3, k = 4 and every λ by Hanani [3, 4, 5].

These results for $\lambda = 1$ show—and we note this here for future references—that necessary and sufficient conditions for the existence of tactical systems S(4, 2, n), S(5, 2, n) and S(4, 3, n) are, respectively

$$(3) n \equiv 1 \text{ or } 4 \pmod{12}$$

$$(4) n \equiv 1 \text{ or } 5 \pmod{20}$$

$$(5) n \equiv 2 \text{ or } 4 \pmod{6}$$

More general coverings $R(k, l, \lambda, n)$ existing for every n may be defined.

Received May 15, 1963. This paper will form part of the author's D. Sci. thesis in preparation at the Technion, Israel Institute of Technology, Haifa.