ON THE NORMAL BUNDLE OF A MANIFOLD

MARK MAHOWALD

In the Michigan lecture notes of 1940 [8] Whitney proved that any manifold in the cobordism class of P_2 cannot be embedded in R^4 with a normal field while non-orientable manifolds in the trivial cobordism class may or may not have a normal field. We will give a new proof of this result using some of the recent notions of differential topology. As one would expect, Whitney's theorem is a special case of a more general theorem and for the statement of this theorem we introduce some notation.

Let M^n be a compact smooth *n*-manifold. Let \overline{w}_i be the dual Stiefel Whitney classes of M^n .

DEFINITION. Let $\sigma(M^n) = 0$ if $\bar{w}_1 \cdot \bar{w}_{n-1} = 0$ and $\sigma(M^n) = 1$ if $\bar{w}_1 \cdot \bar{w}_{n-1} \neq 0$.

Clearly $\sigma(M^n)$ is just a Stiefel Whitney number [6]. Note also that by a result of Massey [5], $\sigma(M^n) = 0$ unless $n = 2^j$.

THEOREM 1. For any embedding of M^n in \mathbb{R}^{2n} the (twisted) Euler class is congruent to $2\sigma \mod 4$.

This result is a slight sharpening of the theorem of Massey [4]; the proof is given in §4 after some preliminary results in §§2 and 3.

Let χ be the Euler characteristic of M^3 . In Whitney's theorem the role of σ in Theorem 1 is played by χ . It is not hard to verify that for 2-dimension manifolds $\sigma = \chi \mod 2$. In addition, for 2-dimensional manifolds we can prove (section 6)

THEOREM 2. For each k and each value of σ there is a manifold M^2 and an embedding of M^2 in R^4 with twisted Euler class $2\sigma + 4k$.

We have not been able to show that a single manifold has an embedding for each k. Whitney exhibited two embeddings of the Klein bottle, one with a trivial Euler class and one with a non-trivial one.

We also have this weaker result (section 7) for other values of n.

THEOREM 3. For every even n there exists a manifold M^n and an embedding of M^n in R^{2n} with no normal field.

It is known that if $n \neq 2^{j}$ and n > 3, then every *n*-manifold embeds Received October 2, 1963.