A DECISION PROCEDURE FOR A CLASS OF FORMULAS OF FIRST ORDER PREDICATE CALCULUS

M. R. KROM

1. Introduction. In [4] (c.f. also case V' page 256 of [1]) J. Herbrand provides a decision procedure which is equivalent to a decision procedure for determining for a fixed contradiction C and for any first order prenex formula Γ whose matrix is a conjunction of signed atomic formulas, whether $\Gamma \rightarrow C$ is valid. In this paper we define a class a of first order formulas and then provide a decision procedure for determining for any first order prenex formula Γ whose matrix is a conjunction of signed atomic formulas and and member \varDelta of the class, whether $\Gamma \rightarrow \varDelta$ is valid. Although the class of formulas \varDelta that we consider is rather large, it is clear that some restriction is necessary since a decision procedure for the class itself is obtained by using for Γ a single propositional parameter that does not occur in \varDelta .

The formulas we consider are those of any system of pure first order predicate calculus without equality and without function symbols. We use \lor , \land , \neg , and \rightarrow for the propositional connectives disjunction, conjunction, denial, and the conditional, respectively. The symbols Γ , Δ , Γ_0 , Δ_0 , Γ_1 , Δ_1 , \cdots shall range over arbitrary formulas, P, Q, P_1 , Q_1 , \cdots over prefixes, and M, N, M_1, N_1, \cdots over matrices. A propositional parameter or predicate parameter together with its attached individual variables or individual parameters will be called an atomic formula. An occurrence of an atomic formula in a formula Γ is called an *atomic* part of Γ . Two prenex formulas are similar if their matrices differ only in the symbols occupying individual variable places of the atomic formulas. Two prenex formulas are *congruent* if they differ only by equivalent replacements of bound variables. We indicate that \varDelta is a logical consequence of Γ by writing $\Gamma \models \Delta$. If $\Gamma \models \Delta$ then there exists a symmetric L-deduction of Δ from Γ as described in [2]. For any formulas Γ and Δ an L-deduction of Δ from Γ is an ordered (n + 1)tuple $\langle \Gamma_0, \cdots, \Gamma_n \rangle$ where $\Gamma_0 = \Gamma$ and $\Gamma_n = \Delta$, together with a specification of how, for any m < n, Γ_{m+1} results from Γ_m by an application of an L-rule. The reader is referred to pages 252 and 253 of [2] for the definitions of the eleven L-rules. An L-deduction is symmetric if and only if the order in which the different kinds of L-rules are applied satisfies conditions (iii) through (vi) on page 257 of [2]. In addition, for convenience, we require that a symmetric L-deduction have exactly one application of the operation matrix change.

Received June 6, 1963. The author is grateful to the referee for many valuable suggestions.