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1* Introduction* The theory of quadratic functionals on a
Hubert space is applied here to variational problems for multiple
integrals, involving several dependent variables and their partial
derivatives up to any finite order, in nonparametric form. The treat-
ment is confined to integration over open sets with fixed boundary,
and to weak neighborhoods of an extremal. The basic result is the
establishment of general sufficiency theorems for a weak relative
minimum with isoperimetric or differential side conditions. A specific
application is made of the sufficiency theorem in the case of isoperimetric
side conditions to the extension of a well known characterization of
of extremals. This characterization has been treated by Poincare [16],
Birkhoff and Hestenes [1], Karush [9] and others. It is analogous to
the characterization of saddle points on two-dimensional surfaces as
constrained extrema.

2* Quadratic forms* The theory of quadratic functionals (forms)
has been developed explicitly by Hestenes [6, 7], and implicitly by Van
Hove [19] and writers on elliptic partial differential equations.

If Q(x) is a quadratic form on a Hubert space £> with real scalars
then there exist unique subspaces £>+, φ0, φ_ of £>, having the null
vector as their only common element, that are mutually orthogonal
and Q-orthogonal, are such that Q is positive on £>+, negative on £>_,
and zero on φ0, and are such that ξ> — ξ>+ + φ0 + Φ~ [6, p. 543]. The
sum of the dimensions of the subspaces ξ>_ and £>0 will be called the
isoperimetric index of Q on ξ). A quadratic form that is represen-
table on ξ> as the sum of a positive definite quadratic form and a w-
continuous quadratic form has been called a Legendre form by M. R.
Hestenes. The fact that the isoperimetric index of a Legendre form
is finite is significant for the characterization of extremals given below.

If Q(x) and K{x) are quadratic forms on ξ> such that J(b; x) —
Q(x) + bK(x) is a Legendre form for every positive number b, K(x) ^ 0,
and Q(x) > 0 whenever K(x) = 0 and x Φ 0, then there is a positive
number c such that J(c; x) is positive definite on ξ>. A corollary to
this is: If Q(x) and K{x) are quadratic forms on ξ>, J(b0; x) —
Q(x) + b0K(x) is a Legendre form for some number bQy K{x) ^ 0, and
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