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CHEBYSHEV APPROXIMATION TO ZERO

JAMES M. SLOSS

In this paper we shall be concerned with the questions
of existence, uniqueness and constructability of those poly-
nomials in k + 1 variables (xί9 x2, , xk9 y) of degree not
greater than ns in xs and m in y which best approximate
zero on Ji x J2 x X h+i, Is = [—1, 1], in the Chebyshev
sense.

It is a classic result that among all monic polynomials of degree
not greater than n there is a unique polynomial whose maximum over
the interval [ — 1,1] is less than the maximum over [—1,1] of any
other polynomial of the same type and moreover it is given by Tn(x) =
2λ~n cos [n are cosx], the normalized Chebyshev polynomial.

Our method of attack will be to prove a generalization of an in-
equality for monic polynomials in one variable concerning the lower
bound of the maximum viz. m a x ^ ^ ^ | PJx) | ^ 21~n where Pn(x) is
a monic polynomial of degree not greater than n. The theorem will
show that the only hope for uniqueness is to normalize our class of
polynomials. This is done in a very natural way viz. by considering
only polynomials, if they exist, of the form:

(0.1) P(xu x2, , xk, y) = Am(xl9 , xk)ym

for which Am{xu x2, , xk) is the best polynomial approximation to
zero on Iλx I2x x Ik. Thus if k = 1, we consider only polynomials
of the form:

(0.2) P(xu y) = fn(xdym + Am_1(x1)r~1 + + 4,(«i)

We find in the case of (0.2) that there is a unique best polynomial
approximation and it is given by Tn{x^)fm(y). Thus we can consider
the question of existence, uniqueness and constructability of a polyno-
mial of the form:

(0.3) P ( x l 9 x 2 , y) = f ^ 4

+ A m ^ ( x l 9 x2)ym-1 + + A0(xlf x2)

that best approximates zero. We find in this case there is a unique
best polynomial approximation and it is given by T^x^T^x^TJty).
Continuing in this way we shall show that the question is meaning-
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