PROPER ORDERED INVERSE SEMIGROUPS

Tôru Saitô

Let S be an ordered inverse semigroup, that is, an inverse semigroup with a simple order < which satisfies the condition:

x < y implies $xz \leq yz$ and $zx \leq zy$.

Let E be the subsemigroup of S constituted by all the idempotents of S. By a result of Munn, $\Gamma = S/\sigma$ is an ordered group, where σ is the congruence relation such that $x\sigma y$ if and only if ex = ey for some $e \in E$. An ordered inverse semigroup S is called proper if the σ -class I which is the identity element of Γ contains only idempotents of S.

In a proper ordered inverse semigroup S, let $\Gamma(e)(e \in E)$ be the set of those members of Γ which intersect nontrivially with R_e . Each element of S can be represented in the form (α, e) , where $e \in E$ and $\alpha \in \Gamma(e)$. We define $e^{\alpha} = a^{-1}a \in E$, where $a = (\alpha, e)$. Then $\Gamma(e)$ and e^{α} satisfy the following six conditions:

- $(\mathbf{i}) \quad \bigcup_{e \in E} \Gamma(e) = \Gamma;$
- (ii) $I \in \Gamma(e)$ and $e^{I} = e$;

(iii) if $f \leq e$ in the semilattice with respect to the natural ordering of the commutative idempotent semigroup E and $\alpha \in \Gamma(e)$, then $\alpha \in \Gamma(f)$ and $f^{\alpha} \leq e^{\alpha}$ in the semilattice E;

- (iv) if $\alpha \in \Gamma(e)$ and $\beta \in \Gamma(e^{\alpha})$, then $\alpha\beta \in \Gamma(e)$ and $e^{\alpha\beta} = (e^{\alpha})^{\beta}$;
- (\mathbf{v}) if $\alpha \in \Gamma(e)$, then $\alpha^{-1} \in \Gamma(e^{\alpha})$;
- (vi) if $\alpha \in \Gamma(e) \cap \Gamma(f)$ and $e \leq f$, then $e^{\alpha} \leq f^{\alpha}$.

Also the product and the order in S determined by

 $(\alpha, e)(\beta, f) = (\alpha\beta, (e^{\alpha}f)^{\alpha-1});$ $(\alpha, e) \leq (\beta, f)$ if and only if either $\alpha < \beta$ or $\alpha = \beta, e \leq f$.

Next we prove conversely a theorem asserting that, for an ordered commutative idempotent semigroup E and an ordered group Γ , if $\Gamma(e)$ and e^{α} satisfy the six conditions above, then the set $\{(\alpha, e); e \in E, \alpha \in \Gamma(e)\}$ is a proper ordered inverse semigroup with respect to the product and the order mentioned above. Besides this, we present other characterizations of special cases.

Ordered semigroups were studied systematically in [4], [5], [6]. In [4], we studied ordered idempotent semigroups. In an ordered semigroup, the set of all the idempotents always constitutes a subsemigroup and so the study of ordered idempotent semigroups will clarify the structure of this subsemigroup. In [5], we were essentially concerned with ordered regular semigroups. As the first step of the study of these semigroups, in that paper we determined all the types

Received April 14, 1964.