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COMMUTATIVE F-ALGEBRAS

MELVIN ROSENFELD

We extend several theorems for commutative Banach al-
gebras to topological algebras with a sequence of semi-norms
(F-algebras). The question of what functions "operate" on
an F-algebra is considered. It is proven that analytic func-
tions in several complex variables operate by applying a
theorem due to Waelbroeck. If all continuous functions
operate on an F-algebra, then it is an algebra of continuous
functions. However, unlike the situation for Banach algebras
[6], it is not true that if V operates the algebra is C(Δ).
This will be shown by an example. A theorem due to Curtis [4],
concerning continuity of derivations when the algebra is regular
is extended to F-algebras. The result is applied to an algebra
of Lipschitz functions to show that it has only a trivial
derivation.

Preliminaries* Throughout this paper the letter A will stand

for a commutative i^-algebra. An F-algebra is a topological algebra

with topology determined by a sequence of algebraic semi-norms. The

nth semi-norm of an element x in A will be written || x \\n. We may

and shall always assume that for all x in A, \\x\\ntί | |$IL+i. ^ +

will denote the topological space of all continuous multiplicative linear

functionals on A with the weak* topology. A will denote A+ minus

the zero functional with the relativized topology. For x in A, x will

be the function in C(/l+) (the continuous functions on A+ with the

compact-open topology) defined by x{φ) = φ{x). A will be called re-

gular if given φ0 in A and V a neighborhood of φ0, there is an element

x in A such that φo(x) — 1 and φ{x) — 0 for φ $ V. A will be called

semi-simple if x — 0 implies x = 0.

A basic device in the study of F-algebras is to represent A as

the inverse limit of a sequence of Banach algebras {An} where An is

the completion of A\In with norm ||flc + i» | | = ||aj|L and In is the

ideal of all x in A such that | |a?| |Λ = 0. The homomorphism πmtn\

An —> Am for m ^ n is defined as the completion of the mapping

x + In —• x + Im. This representation enables one to construct an ele-

ment in A by constructing a sequence {xn} such that for each n,
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