THE DISTRIBUTION OF CUBIC AND QUINTIC NON-RESIDUES

JAMES H. JORDAN

For a prime $p \equiv 1 \pmod{3}$, the reduced residue system S_3 , modulo p, has a proper multiplicative subgroup, C^{0} , called the cubic residues modulo p. The other two cosets formed with respect to C^0 , say C^1 and C^2 , are called classes of cubic nonresidues. Similarly for a prime $p \equiv 1 \pmod{5}$ the reduced residue system S_5 , modulo p, has a proper multiplicative subgroup, Q^0 , called the quintic residues modulo p. The other four cosets formed with respect to Q^0 , say Q^1 , Q^2 , Q^3 and Q^4 are called classes of quintic non-residues. Two functions, $f_3(p)$ and $f_5(p)$, are sought so that (i) if $p \equiv 1 \pmod{3}$ then there are positive integers $a_i \in C^i$, i = 1, 2, such that $a_i < f_3(p)$, and (ii) if $p \equiv 1 \pmod{5}$ then there are positive integers $a_i \in Q^i$, i = 1, 2, 3, 4 such that $a_i < f_5(p)$. The results established in this paper are that for p sufficiently large, (i) $f_3(p) = p^{\alpha+\varepsilon}$, where α is approximately .191, and (ii) $f_5(p) = p^{\beta+\epsilon}$, where $.27 < \beta < .2725.$

Davenport and Erdös [3] raised the general question about the size of the smallest element in any given class of kth power non-residues. The special cases k = 3 and k = 5 are of primary concern in this paper. They proved a quite general theorem of which two special cases are:

THEOREM A. For sufficiently large primes $p \equiv 1 \pmod{3}$ and $\varepsilon > 0$ each class of cubic non-residues possess a positive integer smaller than $p^{55/112+\varepsilon}$.

THEOREM B. For sufficiently large primes $p \equiv 1 \pmod{5}$ and $\varepsilon > 0$ each class of quintic non-residues possess a positive integer smaller than $p^{197/396+\varepsilon}$.

In the same paper Davenport and Erdös used a result of de Bruijn [2] to improve the constant of Theorem A to approximately .383.

Recently D. A. Burgess [1] succeeded in improving Polya's inequality concerning character sums. Burgess' result is

THEOREM C. If p is a prime and if χ is a nonprincipal character, modulo p, and if H and r are arbitrary positive integers then

Received April 8, 1963 and in revised form May 4, 1964.