FACTORIZATIONS OF p-SOLVABLE GROUPS

JOHN G. THOMPSON

The object of this paper is to put in relief one of the ideas which has been very helpful in studying simple groups, viz. using factorizations of p-solvable groups to obtain information about the subgroups of a simple group which contain a given S_p -subgroup. Since the idea is so simple, it seems to deserve a simple exposition.

The group $J(\mathfrak{X})$ was introduced in [3]. In this paper, $J(\mathfrak{X})$ is again used, together with a similarly defined group, to obtain factorizations of some p-solvable groups which are of relevance in the study of simple groups.

As in [3], $m(\mathfrak{X})$ denotes the minimal number of generators of the finite group \mathfrak{X} , and $d(\mathfrak{X}) = \max\{m(\mathfrak{A})\}$, \mathfrak{A} ranging over all the abelian subgroups of \mathfrak{X} . For each nonnegative integer n, let $\mathbf{J}_n(\mathfrak{X}) = \langle \mathfrak{A} \mid \mathfrak{A}$ is an abelian subgroup of \mathfrak{X} with $m(\mathfrak{A}) \geq d(\mathfrak{X}) - n \rangle$. Thus $\mathbf{J}_0(\mathfrak{X}) = \mathbf{J}(\mathfrak{X})$ and $\mathbf{J}_k(\mathfrak{X}) = \mathfrak{X}$ whenever $k \geq d(\mathfrak{X}) - 1$. Also $\mathbf{J}_n(\mathfrak{X}) \subseteq \mathbf{J}_{n+1}(\mathfrak{X})$ for $n = 0, 1, \cdots$.

THEOREM 1. Suppose \mathfrak{G} is a p-solvable finite group, p is a prime, and \mathfrak{G}_p is a S_p -subgroup of \mathfrak{G} . Suppose also that $O_{p'}(\mathfrak{G}) = 1$ and that one of the following holds:

- (a) $p \geq 5$.
- (b) p=3 and SL(2,3) is not involved in \mathfrak{G} .
- (c) p=2 and SL(2,2) is not involved in \mathfrak{G} .

Let $\mathfrak{H} = \bigcap_{g \in \mathfrak{G}} C_{\mathfrak{G}}(\mathbf{Z}(\mathfrak{G}_p))^g$. Then $\mathfrak{G} = \mathfrak{H} \cdot \mathbf{N}_{\mathfrak{G}}(\mathbf{J}(\mathfrak{G}_p))$ and if $p \geq 5$, then $\mathfrak{G} = \mathfrak{H} \cdot \mathbf{N}_{\mathfrak{G}}(\mathbf{J}(\mathfrak{G}_p))$. In particular, $\mathfrak{G} = C_{\mathfrak{G}}(\mathbf{Z}(\mathfrak{G}_p)) \cdot \mathbf{N}_{\mathfrak{G}}(\mathbf{J}(\mathfrak{G}_p))$.

Proof. Let $\mathfrak{W}_1 = \mathbf{Z}(\mathfrak{S}_p)^{\mathfrak{S}}$, $\mathfrak{W} = \Omega_1(\mathfrak{W}_1)$. Then $\mathfrak{S} = \mathbf{C}_{\mathfrak{S}}(\mathfrak{W}_1)$ and $\mathfrak{S} = \mathbf{O}_p(\mathfrak{S} \mod \mathfrak{S})$. If $p \geq 5$, then since $\mathbf{J}(\mathfrak{S}_p)$ char $\mathbf{J}_1(\mathfrak{S}_p)$, it suffices to show that $\mathbf{J}_1(\mathfrak{S}_p) \subseteq \mathfrak{S}$, while if $p \leq 3$, it suffices to show that $\mathbf{J}(\mathfrak{S}_p) \subseteq \mathfrak{S}$.

Suppose the theorem is false and \mathfrak{G} is a minimal counterexample. Let \mathfrak{A} be an abelian subgroup of \mathfrak{G}_p , $\mathfrak{A} \nsubseteq \mathfrak{H}$, and $m(\mathfrak{A}) \geq d(\mathfrak{G}_p) - \delta$, where $\delta = 0$ if $p \leq 3$ and $\delta = 1$ if $p \geq 5$. Let $\mathfrak{A} = \mathbf{O}_{p'}(\mathfrak{G} \mod \mathfrak{H})$, $\mathfrak{A} = \mathfrak{A}\mathfrak{A}$. Since $\mathfrak{G}_p \cap \mathfrak{A}$ is a S_p -subgroup of \mathfrak{L} , it follows that the theorem is violated in \mathfrak{L} , so by induction, $\mathfrak{L} = \mathfrak{G}$. Minimality of \mathfrak{G} forces $\mathfrak{A}/\mathfrak{A} \cap \mathfrak{H}$ to be cyclic and forces $\mathfrak{A}/\mathfrak{L}$ to be a special q-group. On the other hand, since $m(\mathfrak{A}) \geq d(\mathfrak{G}_p) - \delta$, it follows that $|\mathfrak{B} : \mathfrak{B} \cap \mathfrak{A}| \leq p^{1+\delta}$. If $p \geq 5$, Theorem B of Hall-Higman [2] yields a contradiction, while if $p \leq 3$,

Received May 6, 1964. The author thanks the Sloan Foundation for its support.