FACTORIZATIONS OF p-SOLVABLE GROUPS ## JOHN G. THOMPSON The object of this paper is to put in relief one of the ideas which has been very helpful in studying simple groups, viz. using factorizations of p-solvable groups to obtain information about the subgroups of a simple group which contain a given S_p -subgroup. Since the idea is so simple, it seems to deserve a simple exposition. The group $J(\mathfrak{X})$ was introduced in [3]. In this paper, $J(\mathfrak{X})$ is again used, together with a similarly defined group, to obtain factorizations of some p-solvable groups which are of relevance in the study of simple groups. As in [3], $m(\mathfrak{X})$ denotes the minimal number of generators of the finite group \mathfrak{X} , and $d(\mathfrak{X}) = \max\{m(\mathfrak{A})\}$, \mathfrak{A} ranging over all the abelian subgroups of \mathfrak{X} . For each nonnegative integer n, let $\mathbf{J}_n(\mathfrak{X}) = \langle \mathfrak{A} \mid \mathfrak{A}$ is an abelian subgroup of \mathfrak{X} with $m(\mathfrak{A}) \geq d(\mathfrak{X}) - n \rangle$. Thus $\mathbf{J}_0(\mathfrak{X}) = \mathbf{J}(\mathfrak{X})$ and $\mathbf{J}_k(\mathfrak{X}) = \mathfrak{X}$ whenever $k \geq d(\mathfrak{X}) - 1$. Also $\mathbf{J}_n(\mathfrak{X}) \subseteq \mathbf{J}_{n+1}(\mathfrak{X})$ for $n = 0, 1, \cdots$. THEOREM 1. Suppose \mathfrak{G} is a p-solvable finite group, p is a prime, and \mathfrak{G}_p is a S_p -subgroup of \mathfrak{G} . Suppose also that $O_{p'}(\mathfrak{G}) = 1$ and that one of the following holds: - (a) $p \geq 5$. - (b) p=3 and SL(2,3) is not involved in \mathfrak{G} . - (c) p=2 and SL(2,2) is not involved in \mathfrak{G} . Let $\mathfrak{H} = \bigcap_{g \in \mathfrak{G}} C_{\mathfrak{G}}(\mathbf{Z}(\mathfrak{G}_p))^g$. Then $\mathfrak{G} = \mathfrak{H} \cdot \mathbf{N}_{\mathfrak{G}}(\mathbf{J}(\mathfrak{G}_p))$ and if $p \geq 5$, then $\mathfrak{G} = \mathfrak{H} \cdot \mathbf{N}_{\mathfrak{G}}(\mathbf{J}(\mathfrak{G}_p))$. In particular, $\mathfrak{G} = C_{\mathfrak{G}}(\mathbf{Z}(\mathfrak{G}_p)) \cdot \mathbf{N}_{\mathfrak{G}}(\mathbf{J}(\mathfrak{G}_p))$. *Proof.* Let $\mathfrak{W}_1 = \mathbf{Z}(\mathfrak{S}_p)^{\mathfrak{S}}$, $\mathfrak{W} = \Omega_1(\mathfrak{W}_1)$. Then $\mathfrak{S} = \mathbf{C}_{\mathfrak{S}}(\mathfrak{W}_1)$ and $\mathfrak{S} = \mathbf{O}_p(\mathfrak{S} \mod \mathfrak{S})$. If $p \geq 5$, then since $\mathbf{J}(\mathfrak{S}_p)$ char $\mathbf{J}_1(\mathfrak{S}_p)$, it suffices to show that $\mathbf{J}_1(\mathfrak{S}_p) \subseteq \mathfrak{S}$, while if $p \leq 3$, it suffices to show that $\mathbf{J}(\mathfrak{S}_p) \subseteq \mathfrak{S}$. Suppose the theorem is false and \mathfrak{G} is a minimal counterexample. Let \mathfrak{A} be an abelian subgroup of \mathfrak{G}_p , $\mathfrak{A} \nsubseteq \mathfrak{H}$, and $m(\mathfrak{A}) \geq d(\mathfrak{G}_p) - \delta$, where $\delta = 0$ if $p \leq 3$ and $\delta = 1$ if $p \geq 5$. Let $\mathfrak{A} = \mathbf{O}_{p'}(\mathfrak{G} \mod \mathfrak{H})$, $\mathfrak{A} = \mathfrak{A}\mathfrak{A}$. Since $\mathfrak{G}_p \cap \mathfrak{A}$ is a S_p -subgroup of \mathfrak{L} , it follows that the theorem is violated in \mathfrak{L} , so by induction, $\mathfrak{L} = \mathfrak{G}$. Minimality of \mathfrak{G} forces $\mathfrak{A}/\mathfrak{A} \cap \mathfrak{H}$ to be cyclic and forces $\mathfrak{A}/\mathfrak{L}$ to be a special q-group. On the other hand, since $m(\mathfrak{A}) \geq d(\mathfrak{G}_p) - \delta$, it follows that $|\mathfrak{B} : \mathfrak{B} \cap \mathfrak{A}| \leq p^{1+\delta}$. If $p \geq 5$, Theorem B of Hall-Higman [2] yields a contradiction, while if $p \leq 3$, Received May 6, 1964. The author thanks the Sloan Foundation for its support.