ON THE REGIONS BOUNDED BY HOMOTOPIC CURVES

A. MARDEN¹, I. RICHARDS², AND B. RODIN³

We give a short proof of the following theorem of H. I. Levine [2]:

Let \mathcal{A} and \mathcal{B} be nonintersecting simple closed curves on an orientable surface S (compact or not).

(i) If \mathscr{A} is homotopic to zero, then \mathscr{A} bounds a closed disk in S.

(ii) If \mathscr{A} and \mathscr{B} are freely homotopic but not homotopic to zero then $\mathscr{A} \cup \mathscr{B}$ bounds a closed cylinder in S.

The proof is based on some elementary properties of covering surfaces and the Jordan-Schönflies Theorem for planar surfaces and is as follows. Let H be the cyclic subgroup of $\pi_i(S)$ generated by \mathscr{M} . By a standard construction (see [1]) we may form a covering surface $\widetilde{S} \xrightarrow{\pi} S$ of S having the following properties: (1) $\pi_1(\widetilde{S}) \approx H$; (2) we distinguish a point $O \in S$ and a point $\widetilde{O} \in \widetilde{S}$ lying over O—then if \mathscr{D} is a closed curve in S through O and $\widetilde{\mathscr{D}}$ is the lift of \mathscr{D} to \widetilde{S} which passes through \widetilde{O} , the curve $\widetilde{\mathscr{D}}$ is closed in \widetilde{S} if and only if $\mathscr{D} \in H$.

There exist closed curves \mathscr{N}_1 and $\widetilde{\mathscr{B}}_1$ in \widetilde{S} which are lifts of \mathscr{A} and \mathscr{B} . To see this assume that $O \in \mathscr{A}$ so by (2) \mathscr{A} lifts to a closed curve through \widetilde{O} . Since \mathscr{A} and \mathscr{B} are freely homotopic there is an arc γ from \mathscr{A} to \mathscr{B} such that $\mathscr{A} \sim \gamma \mathscr{B} \gamma^{-1}$. Then $\gamma \mathscr{B} \gamma^{-1}$ has at least one lift to a closed curve in \widetilde{S} ; hence so does \mathscr{B} .

LEMMA. If \tilde{R} is a compact region in \tilde{S} , π is one-to-one on $\partial \tilde{R}$, and π (int \tilde{R}) $\cap \pi(\partial \tilde{R}) = \emptyset$, then π maps \tilde{R} homeomorphically onto $\pi(\tilde{R})$.

Proof. The hypotheses imply that the region $\widetilde{R}_0 \equiv \operatorname{int} \widetilde{R}$ is an unlimited covering surface of $\pi(\widetilde{R}_0)$. We show that every point of $\pi(\widetilde{R}_0)$ is covered exactly once. For suppose $\widetilde{p}_1, \widetilde{p}_2$ are two points over $p \in \pi(\widetilde{R}_0)$. Let γ be an arc in $\pi(\widetilde{R}_0)$ from p to $\pi(\partial \widetilde{R})$ and let $\widetilde{\gamma}_1, \widetilde{\gamma}_2$, be arcs over γ from \widetilde{p}_1 and \widetilde{p}_2 . Then by our hypotheses $\widetilde{\gamma}_1$ and $\widetilde{\gamma}_2$ must intersect on $\partial \widetilde{R}$, and the trivial curve $\gamma - \gamma$ in S lifts to the curve $\widetilde{\gamma}_1 - \widetilde{\gamma}_2$ in \widetilde{S} , a contradiction.

To prove (i) above, we may assume that \tilde{S} , the universal covering surface of S, is a disk. Since $\mathscr{A} \sim 1$, every lift of \mathscr{A} to \tilde{S} is a

¹ Partially supported by the National Science Foundation (GP-2280)

 $^{^{2}}$ Partially supported by the National Science Foundation (G-24295)

³ Partially supported by the Office of Naval Research Contract Nonr 710 (54).