TWO NOTES ON REGRESSIVE ISOLS

JOSEPH BARBACK

This paper deals with regressive functions and regressive isols. It was proven by J. C. E. Dekker in [2] that the collection A_R of all regressive isols is not closed under addition. In the first note of this paper we shall given another proof of this fact by considering a new relation, denoted by $\stackrel{*}{\sim}$, between infinite regressive isols. Let A and B denote infinite regressive isols. The main results established in the first note are:

(1) $A \leq B \implies A \stackrel{*}{\sim} B$, yet not conversely.

(2) $A + B \in \Lambda_R \implies A \stackrel{*}{\searrow} B$, yet not conversely.

(3) There exist infinite regressive isols which are not $\overset{*}{\smile}$ related.

(4) Λ_R is not closed under addition.

In addition, the following result is stated.

(5) $A + B \in A_B \implies \min(A, B) \leq A + B$, yet not conversely. In the second note we consider the \leq^* relation between regressive isols. A natural question concerning this relation is whether $A \leq^* B$, where A and B are regressive isols, is a necessary or a sufficient condition for the sum A + B to be regressive. In the second note we show that this condition is neither necessary nor sufficient.

We shall assume that the reader is familiar with the notations, terminology and main results of [1] and [2].

Preliminaries. Let $\varepsilon = \{0, 1, 2, 3, \dots\}$ be the set of nonnegative integers (numbers). A one-to-one function t_n from ε into ε is regressive if there is a partial recursive function p(x) such that $\rho t \subseteq \delta p$ and $p(t_0) = t_0$, $(\forall n)[p(t_{n+1}) = t_n]$. The function p is a regressing function of t_n if p has the following additional properties: $\rho p \subseteq \delta p$ and $(\forall x)[x \in \delta p \to (\exists n)[p^{n+1}(x) = p^n(x)]]$. It is known (cf. [1]) that every regressive function has a regressing function. A set is regressive if it is finite or the range of a regressive function. A set is retraceable if it is finite or the range of a strictly increasing regressive function. Let p be a regressing function of t_n , then the function p^* is defined by: $\delta p^* = \delta p$ and $p^*(x) = (\mu n)[p^{n+1}(x) = p^n(x)]$. It follows that p^* is a partial recursive function and $(\forall n)[p^*(t_n) = n]$.

Let s_n and t_n be two one-to-one functions from ε into ε . Then $s_n \leq t_n$, if there is a partial recursive function f such that

(1)
$$\rho s \subseteq \delta f \text{ and } (\forall n)[f(s_n) = t_n].$$

Also, s_n and t_n are said to be recursively equivalent (denoted $s_n \simeq t_n$)

Received October 5, 1964. Most of the results contained in this paper were obtained while the author was a student of Professor J. C. E. Dekker at Rutgers University. Research on this paper was supported under NSF Grant GP-266.