WEAK-STAR GENERATORS OF H^{∞}

DONALD SARASON

Let H^{\bullet} denote the algebra of bounded analytic functions in the unit disk $D = \{z: |z| < 1\}$. A function φ in H^{∞} is called a generator if the polynomials in φ are weak-star dense in H^{∞} . The problem to be considered here is that of characterizing the generators of H^{∞} .

The weak-star topology of H^{∞} can be thought of as arising in the following way. By Fatou's theorem, each function ψ in H^{∞} has radial limits at almost every point of the unit circle $C = \{z: |z| = 1\}$ and thus gives rise to a bounded measurable function ψ_{σ} on C. The map $\psi \to \psi_{\sigma}$ sends H^{∞} isomorphically and isometrically onto a certain subspace of $L^{\infty}(C)$; we denote this subspace by $H^{\infty}(C)$. (We regard C as endowed with normalized Lebesgue measure.) The space $H^{\infty}(C)$ is the dual of a quotient space of $L^{1}(C)$ and as such has a weak-star topology (which is simply the topology induced on $H^{\infty}(C)$ by the weak-star topology of $L^{\infty}(C)$). Because of the natural correspondence between H^{∞} and $H^{\infty}(C)$, the weak-star topology on the latter induces a topology on the former, and this is what we mean by the weak-star topology of H^{∞} . The convergent sequences of this topology are easily characterized.

LEMMA 1. A sequence $\{\psi_n\}_1^\infty$ in H^∞ converges weak-star to the function ψ if and only if it is uniformly bounded and converges to ψ at every point of D.

Proof. This is of course well-known; however we include a proof for the sake of completeness. To simplify the notation we shall write $\varphi(e^{it})$ in place of $\varphi_o(e^{it})$ for any φ in H^{∞} For each point a in D let P_a denote the corresponding Poisson kernel, i.e.,

$$P_{a}(z)=rac{1-|\,a\,|^{_{2}}}{|\,1-ar{a}z\,|^{^{2}}}\,,\;\;\;|\,z\,|=1$$
 .

We then have

(1)
$$\varphi(a) = \frac{1}{2\pi} \int_0^{2\pi} \varphi(e^{it}) P_a(e^{it}) dt$$

for all φ in H^{∞} and all a in D.

Now suppose the sequence $\{\psi_n\}$ in H^{∞} is uniformly bounded and converges to the function ψ at each point of D. Then it follows from

Received January 7, 1965.