FRATTINI SUBGROUPS AND ϕ -CENTRAL GROUPS

HOMER BECHTELL

Denote the automorphism group induced on $\mathcal{O}(G)$ by transformation of elements of an *E*-group *G* by \mathcal{H} . Then $\mathcal{O}(\mathcal{H}) =$ $\mathscr{I}(\varPhi(G))$, $\mathscr{I}(\varPhi(G))$ the inner automorphism group of $\varPhi(G)$. Furthermore if G is nilpotent, then each subgroup $N \leq \mathcal{O}(G)$, N invariant under \mathcal{H} , possess an \mathcal{H} -central series. A class of nilpotent groups N is defined as \mathcal{O} -central provided that N possesses at least one nilpotent group of automorphisms $\mathscr{H} \neq 1$ such that $\Phi(\mathscr{H}) = \mathscr{I}(N)$ and N possesses an \mathscr{H} -central series. Several theorems develop results about φ -central groups and the associated *H*-central series analogous to those between nilpotent groups and their associated central series. Then it is shown that in a p-group, \mathcal{O} -central with respect to a p-group of automorphism \mathcal{H} , a nonabelian subgroup invariant under \mathcal{H} cannot have a cyclic center. The paper concludes with the permissible types of nonabelian groups of order p^4 that can be \mathcal{P} -central with respect to a nontrivial group of p-automorphisms.

Only finite groups will be considered and the notation and the definitions will follow that of the standard references, e.g. [6]. Additionally needed definitions and results will be as follows: The group G is the reduced partial product (or reduced product) of its subgroups A and B if A is normal in G = AB and B contains no subgroup K such that G = AK. For a reduced product, $A \cap B \leq \Phi(B)$, (see [2]). If N is a normal subgroup of G contained in $\Phi(G)$, then $\Phi(G/N) \cong \Phi(G)/N$, (see [5]). An elementary group, i.e., an E-group having the identity for the Frattini subgroup, splits over each of its normal subgroups, (see [1]).

1. For a group G, $\Phi(G) = \Phi$, $G/\Phi = F$ is Φ -free i.e., $\Phi(F)$ is the identity. The elements of G by transformation of Φ induce auto-