ON THE Γ -RINGS OF NOBUSAWA

WILFRED E. BARNES

N. Nobusawa recently introduced the notion of a Γ -ring, more general than a ring, and obtained analogues of the Wedderburn theorems for Γ -rings with minimum condition on left ideals. In this paper the notions of Γ -homomorphism. prime and (right) primary ideals, m-systems, and the radical of an ideal are extended to I'-rings, where the defining conditions for a Γ -ring have been slightly weakened to permit defining residue class Γ -rings. The radical R of a Γ -ring M is shown to be an ideal of M, and the radical of M/R to be zero, by methods similar to those of McCoy. If M satisfies the maximum condition for ideals, the radical of a primary ideal is shown to be prime, and the ideal $Q \neq M$ is P-primary if and only if $P^n \subseteq Q$ for some *n*, and $AB \subseteq Q$, $A \not\subseteq P$ implies $B \subseteq Q$. Finally, in Γ -rings with maximum condition, if an ideal has a primary representation, then the usual uniqueness theorems are shown to hold by methods similar to those of Murdoch.

2. Preliminary definitions. If $M = \{a, b, c, \dots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \dots\}$ are additive abelian groups, and for all a, b, c in M and all α, β in Γ , the following conditions are satisfied

- (0) a αb is an element of M,
- (1) $(a + b)\alpha c = a\alpha c + b\alpha c$, $a(\alpha + \beta)b = a\alpha b + a\beta b$, $a\alpha(b + c) = a\alpha b + a\alpha c$,
- (2) $(a\alpha b)\beta c = a\alpha (b\beta c),$

then M is called a Γ -ring. If these conditions are strengthened to

- (0) $a\alpha b$ is an element of M, $\alpha a\beta$ is an element of Γ ,
- (1') same as (1),
- $(2') \quad (a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c),$
- (3') $a\alpha b = 0$ for all a, b in M implies $\alpha = 0$,

we then have a Γ -ring in the sense of Nobusawa [3]. As indicated in [3], an example of a Γ -ring is obtained by letting X and Y be abelian groups, M = Hom(X, Y), $\Gamma = \text{Hom}(Y, X)$, and $a\alpha b$ the usual composite map. (While Nobusawa does not explicitly require that Mand Γ be abelian groups, it appears clear that this is intended.) We may note that it follows from (0)-(2) that $0\alpha b = a0b = a\alpha 0 = 0$ for all α and b in M and all α in Γ .

A subset A of the Γ -ring M is a right (left) *ideal* of M if A is an additive subgroup of M and $A\Gamma M = \{a\alpha c : a \in A, \alpha \in \Gamma, c \in M\}(M\Gamma A)$ is contained in A. If A is both a left and a right ideal, then A is a two-sided ideal, or simply an ideal of M.