EMBEDDING THEOREMS FOR COMMUTATIVE BANACH ALGEBRAS

WILLIAM G. BADE AND PHILIP C. CURTIS, JR.

One knows from the Gelfand theory that every commutative semisimple Banach algebra \mathfrak{A} containing an identity is a separating subalgebra of the algebra of all complex continuous functions on the space of maximal ideals of \mathfrak{A} . We shall be concerned in this paper with conditions which when imposed on a separating Banach subalgebra \mathfrak{A} of $C(\mathfrak{Q}), \mathfrak{Q}$ a compact Hausdorff space, will guarantee that $\mathfrak{A} = C(\Omega)$. The conditions will take the form of restrictions on either the algebra or the space Ω . For example we prove that if \mathfrak{A} is an ε -normal Banach subalgebra of $C(\Omega)$ then $\mathfrak{A} = C(\Omega)$ if an appropriate boundedness condition holds locally on Ω . If Ω is assumed to be an F space in the sense of Gillman and Henriksen this boundedness assumption is redundant. These results include a recent characterization of Sidon sets in discrete groups due to Rudin and have applications to interpolation problems for bounded analytic functions.

Various conditions which guarantee that $\mathfrak{A} = C(\mathfrak{Q})$ are known. One, due to Glicksberg [5], is the following.

(1) Assume \mathfrak{A} is sup-norm closed, contains the constants, and in addition assume that the restriction of \mathfrak{A} to each closed subset F of Ω is a closed subalgebra of C(F).

Another, due to the present authors [1], is the following:

(2) Assume Ω is a totally disconnected *F*-space and that Ω is the maximal ideal space for \mathfrak{A} .

A compact space Ω is an *F*-space if disjoint open F_{σ} sets in Ω have disjoint closures. This class of spaces was introduced by Gillman and Henriksen in [4] and includes stonian and σ -stonian spaces as well as their closed subsets. There are also connected examples.

• The results in this paper center around extensions of these conditions as well as others due to Katznelson [11, 12]. Many of the techniques apply equally well in a Banach space setting, and are discussed in this way where possible.

To begin the discussion we need the following definition: given $\varepsilon > 0$, call a subset $\mathfrak{F} \subset C(\Omega)$ an ε -normal family if for each pair F_1, F_2 of disjoint compact subsets of Ω there exists an $x \in \mathfrak{F}$ satisfying

 $({\rm i}) |x(\omega)-1| < \varepsilon, \qquad \omega \in F_{\scriptscriptstyle 1},$

 $(\text{ ii }) | x(\omega) | < \varepsilon, \qquad \omega \in F_{2}.$

By a Banach subalgebra of $C(\Omega)$ we will mean a subalgebra of $C(\Omega)$, not necessarily containing the constants, which is a Banach algebra