FRACTIONAL POWERS OF OPERATORS

HlKOSABURO KOMATSU

A definition of fractional (or complex) powers A^{α} , $\alpha \in C$, is **given for closed linear operators A in a Banach space** *X* **with** the resolvent set containing the negative real ray $(-\infty, 0)$ and **such that** $\{\lambda(\lambda + A)^{-1}\}$; $0 < \lambda < \infty\}$ is bounded; fundamental pro**perties such as additivity** $(A^{\alpha}A^{\beta} = A^{\alpha+\beta})$, coincidence with the **iterations** $A^{\alpha} = A^{\alpha}$ for integers $\alpha = n$, and analytic dependence **on** *a* **are discussed. Since the fractional powers** *A** **are generally unbounded in both of the cases Re** $\alpha > 0$ and Re $\alpha < 0$, **attention is paid to the domains** $D(A^{\omega})$, which are related to the spaces D^{σ} and R^{τ} of $x \in X$ defined by the regularity of $(\lambda + A)^{-1}x$ at ∞ and 0. When $-A$ generates a bounded con **tinuous semi-group or a bounded analytic semi-group, more detailed results are obtained.**

The study of fractional powers of operators has a long history, which may go back to Abel's work on the tautochrone, the Riemann-Liouville integral, and its generalizations by M. Riesz. However, it is only recently that the general theory was developed. When *A* is the negative of the infinitesimal generator of a bounded semi-group of operators, Hille [6] and Phillips [16] showed that fractional powers could be treated in the framework of an operational calculus which they originated. This program was carried out thoroughly by Balakrishnan [1], Later Balakrishnan [2] gave a new definition and extended his theory to a wider class of operators. About the same time two different definitions were introduced by Krasnosel'skii-Sobolevskii [13] and Kato [10]; further results were obtained by them, Yosida [22], Kato [11] and Watanabe [20]. These theories, with the exception of [11], as well as some classical results on the Riemann-Liouville integral (Hardy-Littlewood [5], Love-Young [14]), will be reconstructed from a unified point of view.

Our definition of fractional powers is essentially the same as Balakrishnan's second definition and if, in particular, Re $\alpha > 0$, they are identical. In order to see that this definition is a natural one, let us consider the case in which A is bounded and the resolvent set $\rho(A)$ contains the negative real axis $(-\infty, 0]$. The most natural definition of A^{α} for such an operator A is given by the Dunford integral

(1.1)
$$
A^{\alpha} = \frac{1}{2\pi i} \int_{\Gamma} \zeta^{\alpha} (\zeta - A)^{-1} d\zeta ,
$$

where the path *Γ* encircles the spectrum $\sigma(A)$ counterclockwise avoiding