AN INEQUALITY FOR THE DENSITY OF THE SUM OF SETS OF VECTORS IN n -DIMENSIONAL SPACE

ALLEN R. FREEDMAN

A Schnirelmann type density is defined for sets of "nonnegative" lattice points. If A, B and $C = A + B$ are such sets with densities α , β and γ respectively, then it is shown that $\gamma \ge \frac{\beta}{1 - \alpha}$ provided $\alpha + \beta < 1$.

1. Let *n* be a positive integer and let Q be the set of all vectors $r = (\rho_1, \dots, \rho_n)$ where each ρ_i is a nonnegative integer and at least one ρ_i is positive. We define a partial order relation \langle on Q where $r < s$ if and only if $\rho_i \leq \sigma_i$ ($i = 1, 2, \dots, n$) with strict inequality holding for at least one index. Denote by *L(r)* the set of all *x* in *Q* for which either $x < r$ or $x = r$.

A nonempty finite subset *F* of Q is called fundamental if, whenever *r* \in *F*, then $L(r) \subseteqq F$. For *A*, $X \subseteq Q$ with *X* finite, let $A(X)$ denote the number of vectors in $A \cap X$. Then the (Kvarda) density of A is

$$
\alpha = \mathrm{glb}\,\frac{A(F)}{Q(F)}
$$

where F ranges over all fundamental subsets of Q .

Let $B \subseteq Q$ and define $A + B = \{a, b, a + b \mid a \in A, b \in B\}$ where addition of vectors is done coordinatewise. Let β and γ be the densities of *B* and $C = A + B$ respectively. Kvarda [1] has proved the inequaliy $\gamma = \alpha + \beta - \alpha\beta$ which for $n = 1$ was first proved by Landau and Schnirelmann. In this paper we prove $\gamma \geq \frac{\beta}{(1 - \alpha)}$ provided $\alpha + \beta < 1$. For $n = 1$, this has been proved by Schur [2].

2. Main results.

LEMMA 1. Let \bar{C} denote the complement of C in Q and suppose $\bar{C} \neq \varnothing$. For a fundamental set F let F^* denote the set of maximal *vectors of F with respect to the partial ordering* <. *Then*

$$
\gamma = \mathop{\rm glb}\nolimits \frac{C(F)}{Q(F)}
$$

where F ranges over all fundamental sets with $F^* \subseteq \overline{C}$.

Proof. Let γ' denote this glb. Clearly $\gamma \leq \gamma'$. Let G be any fundamental set. If $C(G) = Q(G)$ then $C(G)/Q(G) = 1 > \gamma'$. If $C(G) < Q(G)$ then $\overline{C} \cap G \neq \emptyset$. In this case let *F* be the union of all