AN INEQUALITY FOR THE DENSITY OF THE SUM OF SETS OF VECTORS IN *n*-DIMENSIONAL SPACE

ALLEN R. FREEDMAN

A Schnirelmann type density is defined for sets of "nonnegative" lattice points. If A, B and C = A + B are such sets with densities α, β and γ respectively, then it is shown that $\gamma \ge \beta/(1-\alpha)$ provided $\alpha + \beta < 1$.

1. Let *n* be a positive integer and let *Q* be the set of all vectors $r = (\rho_1, \dots, \rho_n)$ where each ρ_i is a nonnegative integer and at least one ρ_i is positive. We define a partial order relation < on *Q* where r < s if and only if $\rho_i \leq \sigma_i$ $(i = 1, 2, \dots, n)$ with strict inequality holding for at least one index. Denote by L(r) the set of all x in *Q* for which either x < r or x = r.

A nonempty finite subset F of Q is called fundamental if, whenever $r \in F$, then $L(r) \subseteq F$. For $A, X \subseteq Q$ with X finite, let A(X) denote the number of vectors in $A \cap X$. Then the (Kvarda) density of A is

$$lpha = {
m glb} \, rac{A(F)}{Q(F)}$$

where F ranges over all fundamental subsets of Q.

Let $B \subseteq Q$ and define $A + B = \{a, b, a + b \mid a \in A, b \in B\}$ where addition of vectors is done coordinatewise. Let β and γ be the densities of B and C = A + B respectively. Kvarda [1] has proved the inequaliy $\gamma = \alpha + \beta - \alpha\beta$ which for n = 1 was first proved by Landau and Schnirelmann. In this paper we prove $\gamma \geq \beta/(1-\alpha)$ provided $\alpha + \beta < 1$. For n = 1, this has been proved by Schur [2].

2. Main results.

LEMMA 1. Let \overline{C} denote the complement of C in Q and suppose $\overline{C} \neq \Phi$. For a fundamental set F let F^* denote the set of maximal vectors of F with respect to the partial ordering <. Then

$$\gamma = \mathrm{glb} rac{C(F)}{Q(F)}$$

where F ranges over all fundamental sets with $F^* \subseteq \overline{C}$.

Proof. Let γ' denote this glb. Clearly $\gamma \leq \gamma'$. Let G be any fundamental set. If C(G) = Q(G) then $C(G)/Q(G) = 1 > \gamma'$. If C(G) < Q(G) then $\overline{C} \cap G \neq \emptyset$. In this case let F be the union of all