ON A PROBLEM OF 0. TAUSSKY

BERNARD W. LEVINGER AND RICHARD S. VARGA

Recently, 0. Taussky raised the following question. Given **a** nonnegative $n \times n$ matrix $A = (a_{i,j})$, let $\overset{\circ}{A}$ be the set of all $n \times n$ complex matrices defined by

 (1.1) $\Omega_A \equiv \{B = (b_{i,j}) \mid |b_{i,j}| = a_{i,j} \text{ for all } 1 \leq i,j \leq n\}.$

Then, defining the spectrum *S(Wl)* of an arbitrary set *Wl* of $n \times n$ matrices *B* as

 (1.2) $S(\mathfrak{M}) \equiv \{ \sigma \mid \det (\sigma I - B) = 0 \text{ for some } B \in \mathfrak{M} \},$

what can be said in particular about $S(\hat{\hat{O}}_A)$? It is not difficult to see that $S(\tilde{Q}_A)$ consists of possibly one disk and a series of annular regions concentric about the origin, but our main result is a precise characterization of $S(\tilde{\Omega}_A)$ in terms of the minimal Gerschgorin sets for *A.*

Introduction. We shall distinguish between two cases. If there is a diagonal matrix $D = \text{diag }(x_{\scriptscriptstyle 1}, \, \cdots, x_{\scriptscriptstyle n})$ with $\bm{x} \geq \bm{0}$ and $\bm{x} \neq \bm{0}$ such that AD is diagonally dominant, then *A* is called essentially diagonally dominant. In this case, the set $S(\hat{\Omega}_A)$ is just the minimal Gerschgorin set $G(\Omega_A)$ of [6], *rotated* about the origin (Theorem 1 and Corollary 2). Determining $S(\hat{Q}_4)$ in this case is quite easy, since it suffices to determine those points of the boundary of $G(\Omega_A)$ which lie on the positive real axis (Theorem 2). This is discussed in § 2.

In the general case when *A* is not essentially diagonally dominant, we must use permutations and intersections (Theorem 3) to fully describe $S(\hat{Q}_4)$, in the spirit of [3]. These results are described in § 3. Also in this section is a generalization (Theorems 3 and 4) of a recent Also in this section is a generalization (Theorems 3 and 4) of a recent $\frac{1}{100}$ result by Camon and Hoffman $\frac{1}{10}$. Our proof of this

generalization differs from that of [1]. Finally, in $s + w$ e give several examples to illustrate the various possibilities for $S(\tilde{Q}_4)$.

Before leaving this section, we point out that the question posed by 0 . Taussky $[5, p, 129]$ has an immediate answer in terms of the results of $[3]$. In $[3]$, the authors completely characterized the spectrum $S(\Omega_o)$ of a related set Ω_o of matrices, where $C=(c_{i,j})$ was an arbitrary $n \times n$ complex matrix and of matrices, where *C* = *(citj)* was an arbitrary

$$
(1.3) \quad \Omega_{\sigma} \equiv \{B = (b_{i,j}) \mid |b_{i,j}\rangle = |c_{i,j}| \text{ and } b_{i,j} = c_{i,j} \text{ for all } 1 \leq i,j \leq n\}.
$$

Clearly, $\Omega_A \subset \Omega_A$. On the other hand, if $D(\theta)$ represents an $n \times n$ diagonal matrix all of whose diagonal entries have modulus unity: