ON A PROBLEM OF O. TAUSSKY

BERNARD W. LEVINGER AND RICHARD S. VARGA

Recently, O. Taussky raised the following question. Given a nonnegative $n \times n$ matrix $A = (a_{i,j})$, let \mathring{Q}_A be the set of all $n \times n$ complex matrices defined by

(1.1) $\hat{\Omega}_A \equiv \{B = (b_{i,j}) \mid |b_{i,j}| = a_{i,j} \text{ for all } 1 \leq i, j \leq n\}$.

Then, defining the spectrum $S(\mathfrak{M})$ of an arbitrary set \mathfrak{M} of $n \times n$ matrices B as

(1.2) $S(\mathfrak{M}) \equiv \{\sigma \mid \det(\sigma I - B) = 0 \text{ for some } B \in \mathfrak{M}\},\$

what can be said in particular about $S(\mathring{\Omega}_A)$? It is not difficult to see that $S(\mathring{\Omega}_A)$ consists of possibly one disk and a series of annular regions concentric about the origin, but our main result is a precise characterization of $S(\mathring{\Omega}_A)$ in terms of the minimal Gerschgorin sets for A.

Introduction. We shall distinguish between two cases. If there is a diagonal matrix $D = \text{diag}(x_1, \dots, x_n)$ with $x \ge 0$ and $x \ne 0$ such that ADis diagonally dominant, then A is called essentially diagonally dominant. In this case, the set $S(\hat{\mathcal{Q}}_A)$ is just the minimal Gerschgorin set $G(\mathcal{Q}_A)$ of [6], rotated about the origin (Theorem 1 and Corollary 2). Determining $S(\hat{\mathcal{Q}}_A)$ in this case is quite easy, since it suffices to determine those points of the boundary of $G(\mathcal{Q}_A)$ which lie on the positive real axis (Theorem 2). This is discussed in § 2.

In the general case when A is not essentially diagonally dominant, we must use permutations and intersections (Theorem 3) to fully describe $S(\hat{\mathcal{Q}}_{4})$, in the spirit of [3]. These results are described in §3. Also in this section is a generalization (Theorems 3 and 4) of a recent interesting result by Camion and Hoffman [1]. Our proof of this generalization differs from that of [1].

Finally, in §4 we give several examples to illustrate the various possibilities for $S(\hat{\mathcal{Q}}_{4})$.

Before leaving this section, we point out that the question posed by O. Taussky [5, p. 129] has an immediate answer in terms of the results of [3]. In [3], the authors completely characterized the spectrum $S(\Omega_{\sigma})$ of a related set Ω_{σ} of matrices, where $C = (c_{i,j})$ was an arbitrary $n \times n$ complex matrix and

(1.3)
$$\Omega_{\sigma} \equiv \{B = (b_{i,j}) \mid |b_{i,j}\} = |c_{i,j}| \text{ and } b_{i,j} = c_{i,j} \text{ for all } 1 \leq i, j \leq n\}$$
.

Clearly, $\Omega_A \subset \tilde{\Omega}_A$. On the other hand, if $D(\theta)$ represents an $n \times n$ diagonal matrix all of whose diagonal entries have modulus unity: