LINEAR TRANSFORMATIONS WHICH PRESERVE HERMITIAN AND POSITIVE SEMIDEFINITE OPERATORS

John de Pillis

Let $\mathfrak A$ and $\mathfrak B$ represent the full algebras of linear operators on the finite-dimensional unitary spaces $\mathscr H$ and $\mathscr K$, respectively. The symbol $\mathscr L(\mathfrak A,\mathfrak B)$ will denote the complex space of all linear maps from $\mathfrak A$ to $\mathfrak B$. This paper concerns itself with the study of the following two cones in $\mathscr L(\mathfrak A,\mathfrak B)$:

- (i) the cone $\mathscr C$ of all $T\in \mathscr L(\mathfrak X,\mathfrak B)$ which send hermitian operators in $\mathfrak B$, and
- (ii) the subcone \mathscr{C}^+ (of \mathscr{C}) of all $T \in \mathscr{L}(\mathfrak{A},\mathfrak{B})$ which send positive semidefinite operators in \mathfrak{A} to positive semidefinite operators in \mathfrak{B} .

In our main results, we characterize the transformations in the cone \mathscr{C} (Theorem 2.1) and present a structure theorem concerning the transformations in the cone \mathscr{C}^+ (Theorem 2.3). Identifying operators in the algebras \mathfrak{A} and \mathfrak{B} with appropriate square matrices, we may summarize Theorem 2.1 by saying that any and every linear transformation T which preserves hermitian matrices is of the form $T: A \to \sum \alpha_i X_i^* A^i X_i$, where each α_i is a real scaler, and each X_i is a certain rectangular matrix depending on T; X_i^* and A^i represent the conjugate transpose and the transpose of matrices X_i and A, respectively. Theorem 2.3 says that the cone of positive semidefinite-preserving transformations \mathscr{C}^+ "generates" or spans all of $\mathscr{L}(\mathfrak{A}, \mathfrak{B})$ in the sense that any T in $\mathscr{L}(\mathfrak{A}, \mathfrak{B})$ can be written

$$T = (K_1 - K_2) + i(K_3 - K_4),$$

where $i^2 = -1$, and each K_i is an element of \mathcal{C}^+ .

- 1. Preliminaries. $L(\mathcal{K}, \mathcal{H})$ denotes the space of linear transformations from the Hilbert space \mathcal{K} to the Hilbert space \mathcal{H} . We define:
- 1 (a). $(x \times y)$ —the dyad transformation, an element of $L(\mathcal{K}, \mathcal{H})$, is defined for fixed $x \in \mathcal{H}$ and $y \in \mathcal{K}$ by: $(x \times y)(z) = (z, y)x$ for all $z \in \mathcal{K}$, where (z, y) is the inner product of z with y. As it turns out, $(x, y) = \operatorname{tr}((x \times y))$, the trace of $(x \times y)$. If $A \in \mathfrak{A}(=(L(\mathcal{H}, \mathcal{H})))$ and $B \in \mathfrak{B}(=L(\mathcal{K}, \mathcal{K}))$, then $(A(x) \times B(y)) = A(x \times y)B^*$.
- 1 (b). P_x —denotes the orthogonal projection onto the subspace spanned by x, i.e., for (x, x) = 1, we have $P_x = (x \times x)$.