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LINEAR TRANSFORMATIONS WHICH PRESERVE
HERMITIAN AND

POSITIVE SEMIDEFINITE OPERATORS

JOHN de PILLIS

Let Si and 33 represent the full algebras of linear operators
on the finite-dimensional unitary spaces έ%f and J3Γ", respec-
tively. The symbol =5 (̂51, 23) will denote the complex space
of all linear maps from % to 33. This paper concerns itself
with the study of the following two cones in iϊ^(2ϊ, 33):

(i) the cone <gf of all Te £f(&9 53) which send hermitian
operators in 51 to hermitian operators in 33, and

(ii) the subcone <gf+ (of 9f) of all ΓeJ^(2t,33) which
send positive semidefinite operators in 5ί to positive semidefinite
operators in 33.

In our main results, we characterize the transformations in the
cone <& (Theorem 2.1) and present a structure theorem concerning
the transformations in the cone ^ + (Theorem 2.3). Identifying oper-
ators in the algebras 21 and S3 with appropriate square matrices, we
may summarize Theorem 2.1 by saying that any and every linear
transformation T which preserves hermitian matrices is of the form
T: A —* Σ oίiX^AtXi, where each a{ is a real sealer, and each Xi is
a certain rectangular matrix depending on T; X* and A* represent
the conjugate transpose and the transpose of matrices X{ and A,
respectively. Theorem 2.3 says that the cone of positive semidefinite-
preserving transformations <£*+ "generates" or spans all of «Ŝ (SI, 33)
in the sense that any T in j£f($ί, 33) can be written

T={Kλ- Kt) + i(K* - K<) ,

where i2 = — 1 , and each K{ is an element of ^ + .

1* Preliminaries* L(3ίΓ, ^f) denotes the space of linear trans-
formations from the Hubert space 3ίΓ to the Hubert space
We define:

1 (a), {x x y)—the dyad transformation, an element of L{^f9

is defined for fixed x e <%f and y e ^Γ by: (x x y)(z) = (z, y)x for all
ze<3?~, where (z,y) is the inner product of z with y. As it turns
out, (x, y) = tr ((x x y)), the trace of (x x y). If A e 3Ϊ( = (L(JT, Sίf))
and £ G 3 3 ( = L ( ^ T , 5ΪΓ)), then (A(x) x B(y)) = A(x x y)B*.

1 (b). Px—denotes the orthogonal projection onto the subspace
spanned by x, i.e., for (x, x) = 1, we have Px = (x x x).

129


