ON w^* -SEQUENTIAL CONVERGENCE AND QUASI-REFLEXIVITY

R. D. MCWILLIAMS

This paper characterizes quasi-reflexive Banach spaces in terms of certain properties of the w^* -sequential closure of subspaces. A real Banach space X is quasi-reflexive of order n, where n is a nonnegative integer, if and only if the canonical image $J_X X$ of X has algebraic codimension n in the second dual space X^{**} . The space X will be said to have property P_n if and only if every norm-closed subspace S of X^* has codimension $\leq n$ in its w^* -sequential closure $K_{\mathbf{X}}(S)$. By use of a theorem of Singer it is proved that X is quasireflexive of order $\leq n$ if and only if every norm-closed separable subspace of X has property P_n . A certain parameter $Q^{(n)}(X)$ is shown to have value 1 if X has property P_n and to be infinite if X does not have P_n . The space X has P_0 if and only if w-sequential convergence and w^* -sequential convergence coincide in X^* . These results generalize a theorem of Fleming, Retherford, and the author.

2. If X is a real Banach space, S a subspace of X^* , and $K_x(S)$ the w^* -sequential closure of S in X^* , then $K_x(S)$ is a Banach space under the norm φ_S defined by

$$\varphi_{s}(f) = \inf \left\{ \sup_{n \in \omega} ||f_{n}|| : \{f_{n}\} \subset S, f_{n} \xrightarrow{w^{*}} f \right\}$$

for $f \in K_x(S)$ [5]. If $S \subseteq T \subseteq K_x(S)$, let

$$C_{x}(S, T) = \sup \{ \varphi_{s}(f) : f \in T, || f || \leq 1 \}$$
.

Thus, $K_x(S)$ is norm-closed in $(X^*, || ||)$ if and only if $C_x(S, K_x(S))$ is finite [5]. For each integer $n \ge 0$ let $\mathscr{T}_n(S)$ be the family of all subspaces T of X^* such that $S \subseteq T \subseteq K_x(S)$ and such that $K_x(S)$ is the algebraic direct sum of T and a subspace of dimension $\le n$. Let

$$C_X^{(n)}(S) = \inf \{ C_X(S, T) : T \in \mathscr{T}_n(S) \},\$$

and let

$$Q^{(n)}(X) = \sup \left\{ C_X^{(n)}(S) : S \text{ a subspace of } X^* \right\}$$
.

It will be said that X has property P_n if and only if $S \in \mathscr{T}_n(S)$ for every norm-closed subspace S of $(X^*, || ||)$.

3. THEOREM 1. Let X be a real Banach space and n a non-