A NOTE ON SEMI-PRIMARY HEREDITARY RINGS

ABRAHAM ZAKS

We give an example of two nonisomorphic semi-primary hereditary rings, Ω and Σ with radicals M and N' respectively, such that $\Omega/M^2 = \Sigma/N'^2$.

Let Λ be a semi-primary ring i.e. its (Jacobson) radical N is nilpotent and $\Gamma = \Lambda/N$ is an Artinian ring. The problem of characterizing a semi-primary ring Λ all of whose residue rings have finite global dimension—was dealt in several papers. It turns out that Λ is such a ring if and only if Λ is a residue ring of a semi-primary hereditary ring Ω . It was suggested that Ω is uniquely determined up to an isomorphism by the condition $\Omega/M^2 \approx \Lambda/N^2$, where M is the radical of Ω .

One can prove that if Λ is an epimorphic image of a semi-primary hereditary ring Ω , then Ω is uniquely determined (up to an isomorphism) by the conditions (a) Ω admits a (semi direct sum) splitting, $\Omega = \Gamma + A + M^2$ and (b) $\Omega/M^2 \approx \Lambda/N^2$.

The following ring furnish a counter example to the uniqueness statement if we don't assume condition (a), even if Λ admits a splitting.

Let k be a field of characteristic $p \neq 0$, and let x be a transcendental element over k. Let $R = k(x^{1/p}) \bigotimes_{k(x)} k(x^{1/p})$ and let V be the radical of R. Then V contains the nonzero element $x^{1/p} \otimes 1 - 1 \otimes x^{1/p}$. Let Σ be a subring of the 3×3 matrix algebra over R, which consists of all matrices M for which:

It is obvious that Σ is an Artinian ring and its radical N' consists of all matrices M in Σ for which $M_{11} = M_{22} = M_{33} = 0$.

Let Λ be Σ/N'^2 , then one easily verifies that:

- (a) gl. dim $\Sigma = 1$
- (b) gl. dim $\Lambda = 2$
- (c) Λ admits a splitting

(d) Σ does not admit a splitting (since V is not an R-direct summand in R).

From (b) and (c) it follows that $\Omega = \Gamma + A + A \bigotimes_{\Gamma} A$ —with $A = N'/N'^2$ —is a semi-primary hereditary ring $(A \bigotimes_{\Gamma} A \bigotimes_{\Gamma} A = 0)$ with radical $M = A + A \bigotimes_{\Gamma} A$. Also $\Lambda = \Gamma + A$ and $A^2 = 0$. Therefore gl. dim $\Omega =$ gl. dim $\Sigma = 1$, $\Omega/M^2 \approx \Sigma/N'^2 \approx \Lambda/N^2$ (N is the radical of Λ).