SEQUENCES OF HOMEOMORPHISMS WHICH CONVERGE TO HOMEOMORPHISMS

JEROME L. PAUL

A technique often used in topology involves the inductive modification of a given mapping in order to achieve a limit mapping having certain prescribed properties. The following definition will facilitate the discussion. Suppose *X* **and** *Y* **are topological spaces, and** $\{W_i\}, i = 1, 2, \cdots$, is a countable **collection of subsets of X. Then a sequence** $\{f_i\}, i \geq 0$ **, of mappings from** X into Y is called stable relative to $\{W_i\}$ if $f_i|(X-W_i) = f_{i-1}|(X-W_i), i, = 1, 2, \cdots$. Note, in the above **definition, that if** *{Wi}* **is a locally finite collection, then** $\lim_{i\to\infty} f_i$ is necessarily a well defined mapping from X into Y , and is continuous if each f_i is continuous. In a typical ${\bf s}$ **moothing theorem, a** C^* -mapping $f: M \to N$ between C^{∞} differ entiable manifolds M and N is approximated by a C^{∞} -mapping $g: M \rightarrow N$, where the mapping g is constructed as the limit **of a suitable sequence** $\{f_i\}$ (with $f_0 = f$) which is stable relative to a locally finite collection ${C_i}$ of compact subsets of M. On the other hand, instead of improving f , it is also of interest **to approximate / by a mapping** *g* **which has bad behavior at, say, a dense set of points of** *M.* **In this paper, such a mapping** *g* is constructed as the limit of a sequence ${f_i}$ (with $f_0 = f$) which is stable relative to ${C_i}$, but where the C_i are more **"clustered" than a locally finite collection. The case of interest** here is where a sequence of homeomorphisms ${H_i}$, which is stable relative to $\{U_i\}$, necessarily converges to a homeomor**phism. Theorem 1 of this paper gives a sufficient condition that the latter be satisfied for homeomorphisms of a metric** space. In Theorem 1, the collection $\{U_i\}$ is not, in general, locally finite (in fact, the U_i satisfy a certain "nested" **condition). Theorem 1 is used to establish a result concerning the distribution of homeomorphisms (of a differentiable manifold) which have a dense set of spiral points.**

Let M be a metric space with metric d . We denote the (open) ball, of radius r, and centered at the point $x \in M$, by $B(x, r) =$ $\{y \in M \mid d(x, y) < r\}.$ The diameter of a nonempty subset A of M is $\delta(A) = \sup \{d(x, y) \mid x \in A, y \in A\}.$ When *M* is euclidean *n*-space E^* , we write the points of E^n as $x = (x^1, \dots, x^n)$, and provide E^n with the usual euclidean norm and metric

$$
||x|| = \left[\sum_{i=1}^{n} (x^{i})^{2}\right]^{1/2}, \quad d(x, y) = ||x - y||.
$$

The boundary of $B(x, r)$ in E^n is the $(n-1)$ -sphere $S(x, r) =$