BISECTION INTO SMALL ANNULI

Moses Glasner, Richard Katz, and Mitsuru Nakai

In a Riemannian manifold the modulus of a relatively compact set with border consisting of two sets of components is introduced to measure its magnitude from the viewpoint of harmonic functions. The existence of a subdivision into two sets each having modulus arbitrarily close to one is established.

1. Let M be a Riemannian manifold, i.e. a connected orientable C^{∞} *n*-manifold that carries a metric tensor g_{ij} . Consider a bordered compact region $E \subset M$ whose border is the union of two nonempty disjoint sets α and β of components. We shall call the configuration (E, α, β) an *annulus*.

Let h be the harmonic function on E with continuous boundary values 0 on α and $\log \mu > 0$ on β such that

(1)
$$\int_{\alpha} *dh = 2\pi .$$

The number $\mu > 1$ is called the *modulus* of the annulus (E, α, β) and we set

$$\mu = \operatorname{mod}(E, \alpha, \beta) .$$

Let w be the harmonic measure of β with respect to E, i.e. the harmonic function on E with continuous boundary values 0 on α and 1 on β . By using Green's formula we obtain

(2)
$$\log \mu = \frac{2\pi}{D_E(w)}$$

where $D_E(w)$ denotes the Dirichlet integral $\int_E dw \wedge *dw$ of w over E.

An illustration of these concepts is obtained by taking the annulus $E = \{x \mid r \leq |x| \leq R\}$ in *n*-dimensional $(n \geq 3)$ Euclidean space. The harmonic measure of |x| = R with respect to E is

$$w = \frac{|x|^{2-n} - r^{2-n}}{R^{2-n} - r^{2-n}}$$

and the modulus of (E, |x| = r, |x| = R) is given by

$$\log \mu = \pi^{1-(n/2)}(2-n) \varGamma \Big(rac{n}{2} \Big) (R^{2-n} - r^{2-n}) \;.$$

Note that $\mu > 1$, in a sense, measures the relative thickness of E and that $\mu \rightarrow 1$ as $R - r \rightarrow 0$.