A NOTE ON CERTAIN BIORTHOGONAL POLYNOMIALS

L. CARLITZ

Konhauser has introduced two polynomial sets $\{Y_n^c(x;k)\}$, $\{Z_n^c(x;k)\}$ that are biorthogonal with respect to the weight function $e^{-x}x^c$ over the interval $(0,\infty)$. An explicit expression was obtained for $Z_n^c(x;k)$ but not for $Y_n^c(x;k)$. An explicit polynomial expression for $Y_n^c(x;k)$ is given in the present paper.

1. Konhauser [2] has discussed two sets of polynomials $Y_n^c(x; k)$, $Z_n^c(x; k)$, $n = 0, 1, \dots, k = 1, 2, 3, \dots, c > -1$; $Y_n^c(x; k)$ is a polynomial in x while $Z_n^c(x; k)$ is a polynomial in x^k . Moreover

$$(1) \qquad \int_{0}^{\infty} e^{-x} x^{c} Y_{n}^{c}(x; k) x^{ki} dx = \begin{cases} 0 & (0 \leq i < n) \\ \neq 0 & (i = n) \end{cases}$$

and

(2)
$$\int_{0}^{\infty} e^{-x} x^{c} Z_{n}^{c}(x; k) x^{i} dx = \begin{cases} 0 & (0 \leq i < n) \\ \neq 0 & (i = n) \end{cases}.$$

For k = 1, conditions (1) and (2) reduce to the orthogonality conditions satisfied by the Laguerre polynomials $L_n^e(x)$.

It follows from (1) and (2) that

(3)
$$\int_{0}^{\infty} e^{-x} x^{c} Y_{i}^{c}(x; k) Z_{j}^{c}(x; k) dx = \begin{cases} 0 & (i \neq j) \\ \neq 0 & (i = j) \end{cases}.$$

The polynomial sets $\{Y_n^e(x; k)\}, \{Z_n^e(x; k)\}\$ are accordingly said to be biorthogonal with respect to the weight function $e^{-x}x^e$ over the interval $(0, \infty)$.

Konhauser showed that

$$(4) Z_n^c(x;k) = \frac{\Gamma(kn+c+1)}{n!} \sum_{j=0}^n (-1)^j {n \choose j} \frac{x^{kj}}{\Gamma(kj+c+1)}$$

As for $Y_n^c(x; k)$, he showed that

(5)
$$Y_{n}^{c}(x;k) = \frac{k}{2i} \int_{c} \frac{e^{-xt}(t+1)^{c+kn}}{[(t+1)^{k}-1]^{n+1}} dt$$
$$= \frac{k}{n!} \frac{\partial^{n}}{\partial t^{n}} \left\{ \frac{e^{-xt}(t+1)^{c+kn}t^{n+1}}{[(t+1)^{k+1}-1]^{n+1}} \right\}_{t=0}$$

In the integral in (5), C may be taken as a small circle about the origin in the *t*-plane.