NOTE ON AN EXTREME FORM

MANORANJAN PRASAD

The purpose of this paper is to find a positive definite quadratic form $f_n(x_1, x_2, \cdots x_n)$ which is extreme and for which each of the binary form $f_2(x_i, x_j)$ is an extreme form. In other words we intend to seek an extreme n-ary form $f_n(x_1, x_2, \cdots x_n)$ which remains extreme when it is reduced to a binary form $f_2(x_i, x_j)$, by setting all but two of the x's equal to zero.

Let $f_n(x_1, x_2, \dots x_n)$ be a quadratic form in n variables,

$$(1.1) x_1, x_2, x_3 \cdots x_n : f_n(x_1, x_2, \cdots x_n) = \sum_i a_{i,i} x_i x_i$$

with determinant $D = |a_{ij}|$ and $a_{ij} = a_{ji} \cdot f_n(x_1, x_2 \cdots x_n)$ is positive-definite that is the roots of the characteristic equation

$$(1.2) |a_{ij} - \lambda \delta_{ij}| = 0$$

are all positive, where

$$\delta_{ij} = 1$$
 if $i = j$; $\delta_{ij} = 0$ if $i \neq j$.

Let M denote the minimum value of $f_n(x_1, x_2 \cdots x_n)$ for integers $x_1, x_2, \cdots x_n$, not all zero. This M is the same for all forms derived from $f_n(x_1, x_2 \cdots x_n)$ by unimodular linear transformations. Let 2s denote the number of times this minimum is attained that is the number of solutions of the Diophantine equation:

$$(1.3) f_n(x_1, x_2, \dots, x_n) = M$$

Let 2s sets of (1.3) be given by

$$(1.4) X = \pm M_k = \pm (m_{1k}, m_{2k}, \cdots, m_{nk})$$

(known as minimal vectors) where $k = 1, 2, \dots, s$.

Taking one of the two sets, considered not distinct, we have

(1.5)
$$\sum a_{ij} m_{ik} m_{jk} = M \\ k = 1, 2, \dots, s.$$

We consider (1.5) as equations in a_{ij} and suppose that (1.5) has an infinitude of sets of solutions in a_{ij} . This means that the auxiliary equation

with $p_{ij} = p_{ji}$, has an infinitude of sets of solutions.