A RIEMANNIAN SPACE WITH STRICTLY POSITIVE SECTIONAL CURVATURE

GRIGORIOS TSAGAS

Let M_1 and M_2 be two Riemannian spaces¹ with Riemannian **metrics** *d^t* **and** *d²* **respectively whose sectional curvature is positive constant. We consider the product of the two** R **iemannian spaces** $M_1 \times M_2$, then the Riemannian space $M_1 \times M_2$ has nonnegative sectional curvature with respect to **the Riemannian metric** $d_1 \times d_2$ but not strictly positive **sectional curvature.**

We can construct a Riemannian metric on $M_1 \times M_2$ which approaches the Riemannian metric $d_1 \times d_2$ as closely as we **wish and which has strictly positive sectional curvature.**

Now, our results can be stated as follows. We consider two $\text{manifolds } M_1(H_1 - E_1, q_1), M_2(H_2 - E_2, q_2) \text{ such that each of them has }$ only one chart where H_1, E_1 are the south hemisphere and the equator, respectively, of a *k*-dimensional sphere $(k \geq 2)$ and E_z , H_z are also the south hemisphere and the equator, respectively, of an *-dimensional* sphere $(n \ge 2)$, and q_1, q_2 are special mappings. We also consider on M_1 and M_2 particular Riemannian metrics d_1, d_2 , respectively, with positive constant sectional curvature. We obtain a special 1-parameter family of Riemannian metrics $F(t)$ on $M_1 \times M_2$ such that $F(0) = d_1 \times d_2$. We have proved that $\forall P \in M_1 \times M_2$ the derivative of the sectional curvature with respect to the parameter t for $t = 0$ and for any plane of $(M_1 \times M_2)_P$, is strictly positive.

1. Let M_1 be a manifold which consists of one chart $(H_1 - E_1, q_1)$, where H_1 , E_1 are the south hemisphere and the equator, respectively, of a *k*-dimensional sphere $S_1^k (k \geq 2)$ and the inverse mapping of q_i is defined as follows

$$
q_1^{-1}=\left\{x^{\mathfrak{l}}=\frac{2u_{1}}{1+u_{1}^{2}+\cdots+u_{k}^{2}}\text{, } \cdots \text{, } x^{k}=\frac{2u_{k}}{1+u_{1}^{2}+\cdots+u_{k}^{2}} \text{, } \\ x^{k+1}=\frac{u_{1}^{2}+\cdots+u_{k}^{2}-1}{1+u_{1}^{2}+\cdots+u_{k}^{2}}\right\}\text{.}
$$

maps the open set $H_1 - E_1$ onto the open ball $u_1^2 + \cdots + u_k^2 < 1$. On the manifold $M₁$, we take the following Riemannian metric

¹ A Riemannian space is a Riemannian manifold covered with one chart ([5], p. 314).