ON A CHARACTERIZATION OF INFINITE COMPLEX MATRICES MAPPING THE SPACE OF ANALYTIC SEQUENCES INTO ITSELF

LOUISE A. RAPHAEL

Let S be the space of all complex sequences. An element $u = \{u_n\}_{n=0}^{\infty}$ of S is called analytic if for some constant M > 0, $|u_n| \leq M^{n+1}$ for $n = 0, 1, 2, \cdots$. By A denote the space of all analytic sequences. Clearly A is the space of all complex functions analytic at zero. 1. Heller has proved

Theorem 1. The transformation $y_n = \sum_{m=0}^{\infty} c_{nm} u_m$ maps A into A if and only if for every p > 0 there exists a q > 0 and a constant M > 0 such that $|c_{nm}| \leq Mp^m/q^n$ for $m, n = 0, 1, 2, \cdots$; and also if and only if the function G of two complex variables (i.e., in $E \times E$, where E is the complex plane) respresented by the double power series $G(z, y) = \sum_{m,n=0}^{\infty} c_{nm} z^m y^n$ be regular on $E \times 0$.

The present paper provides an alternative proof for the theorem in order to give insight into the structure of A as a countable union of BK spaces, that is, Banach spaces with coutinuous coordinates.

Let q > 0 be fixed and $A_q = \{u \in S \mid \sup_n | q^n u_n | = || u ||_q < \infty, n = 0, 1, 2, \cdots \}.$

THEOREM 2. (1) $A = \bigcup_{n=0}^{\infty} A_{q_n}$ where $q_n \downarrow 0$, and (2) for any q > 0, $(A_q, ||u||_q)$ is a BK space.

Proof. (1) A complex sequence $u = \{u_n\}_{n=0}^{\infty}$ is analytic if and only if the $\sup_n |q^n u_n| \leq M$ for some q > 0, some constant M > 0 and $n = 0, 1, 2, \cdots$. It now follows that $A = \bigcup_{0 < q < \infty} A_q$. The proof is completed by a set theoretic argument showing that $\bigcup_{0 < q < \infty} A_q = \bigcup_{n=0}^{\infty} A_{q_n}$ after observing that if 0 < r < s, then $A_s \subset A_r$.

(2) It suffices to observe that $(A_q, ||u||_q)$ is isometrically isomorphic with the Banach space of all bounded complex sequences

$$(m) = \{u \in S \mid || u ||_{(m)} = \sup_{n} |u_{n}|\}.$$

The operator E_q from A_q into (m) establishing this isomorphism is defined by $E_q: \{u_n\}_{n=0}^{\infty} \to \{q^n u_n\}_{n=0}^{\infty}$. Finally for each $n, |u_n| \leq ||u||_q/q^n$. Thus the coordinate functional $P_n(u) = u_n$ is continuous, being a linear operator on A_q . This proves that the space $(A_q, ||u||_q)$ is a BK space.

By a mapping C of a sequence space X into a sequence space Y generated by an infinite complex matrix $(c_{nm}) m, n = 0, 1, 2, \cdots$ is