ON COMMUTATIVE, NONPOTENT ARCHIMEDEAN SEMIGROUPS

Richard G. Levin

In this paper we will study commutative, archimedean, nonpotent (i.e., without an idempotent) semigroups, obtaining several results concerning finitely generated ones. The main theorem of this paper is the following: a finitely generated, commutative, archimedean, nonpotent semigroup is power joined. The main theorem is derived by considering the decomposition of the semigroup S into a union of disjoint semilattices; the congruence ρ_{b}, defined by $x \rho_{b} y$ if and only if there exist positive integers n and m such that $b^{n} x=b^{m} y$, determines the union, whereas congruence classes are semilattices under the partial order \geqq_{b} defined by $x \geqq_{b} y$ if and only if $y=b^{n} x$ or $y=x$. The set of maximal elements relative to \geqq_{b} generates S. The following is a crucial lemma in the proof of the main theorem: let S be a finitely generated, commutative, nonpotent, archimedean semigroup; then the set of maximal elements of S relative to \geqq_{b} is a finite set.

Let S be a commutative, nonpotent, archimedean semigroup. We will define a congruence ρ on S and state several results concerning S / ρ and the congruence classes of S modulo ρ. The remarks and definitions which precede Definition 5 will be used in several instances; a complete discussion can be found in [5]. See [6] and [7] for an abstract of these results. Proofs of all other results in this paper are supplied.

Definition 1. Let $b \in S$. The binary relation ρ_{b} on S is defined by $x \rho_{b} y$ if and only if there exist positive integers n and m such that $b^{n} x=b^{m} y$.

The relation ρ_{b} is a congruence relation on S and b is called the standard element determining the corresponding decomposition of S. Furthermore, for any $b, S / \rho_{b}$ is a group; the congruence class modulo ρ_{b} containing b is the identity element of S / ρ_{b} and it is a subsemigroup of S. We call S / ρ_{b} the structure group of S with respect to b.

Definition 2. Let S_{α} be an arbitrary congruence class of $S\left(\bmod \rho_{b}\right)$. The following relation, \geqq_{b} is a partial order on S_{α}. Let $x, y \in S_{\alpha}$. We define \geqq_{b} on S_{α} by $x \geqq_{b} y$ if and only if there exists a positive integer n such that $y=b^{n} x$, or $y=x$.

Definition 3. A discrete tree R is a lower semilattice (i.e., a

