QUASI-BLOCK-STOCHASTIC MATRICES

W. KUICH

The quasi-block-stochastic matrices are introduced as a generalization of the block-stochastic and the quasi-stochastic matrices. The derivation of theorems is possible which are similar to those derived for block-stochastic matrices by W. Kuich and K. Walk and for quasi-stochastic matrices by Haynsworth. Among other theorems the theorem on the group property, the reduction formula and its application to nonnegative matrices holds in a modified manner. An example illustrates the definitions and theorems.

NOTATION

$A = (a_{ij})$	quasi-block-stochastic matrix
A_{ij}	block of A
$a_{ij}^{\scriptscriptstyle (n)}$	element of A^n
$a^{(n)}$	vector of generalized row sums of A^n
$a_i^{(n)}$	i^{th} generalized row sum of A^n
$S_{\scriptscriptstyle A} = (s_{ij})$	matrix of the generalized row sums of the blocks
${\mathcal S}_{ij}^{(n)}$	element of S^n_A
$\boldsymbol{s}^{(n)}$	vector of row sums of S^n_A
$S_i^{(n)}$	$i^{ ext{th}}$ row sum of S^n_A
l imes l	dimension of A
$l_i imes l_j$	dimension of A_{ij}
k imes k	dimension of S_A
I_{ι}	identity matrix of order l
P	permutation matrix
$e_j = egin{pmatrix} 1 \ d_{n_j+2} \ dots \ d_{n_{j+1}} \end{pmatrix}$	of dimension l_j
u_i	$i^{ ext{th}}$ unit vector of dimension l
v_i	$i^{ ext{th}}$ unit vector of dimension k
$f_j = \sum_{i=n_j+1}^{n_{j+1}} d_i u_i$	
λ	eigenvalue
μ	greatest eigenvalue
$\delta_{ij} = 1$	$ \text{for} \ i=j$
= 0	otherwise
Ø	null matrix
$n_j = \sum\limits_{i=1}^{j-1} l_i$	$n_{\scriptscriptstyle 1}=0$.