THE PRODUCT FORMULA FOR THE THIRD OBSTRUCTION

ROBERT E. MOSHER

Let $\hat{\varsigma}$ be an SO(n)-bundle with n > 3; let $p: E \to B$ be the projection in the associated (n-1)-sphere bundle. In this note we express the third obstruction to a cross-section of p as a tertiary characteristic class and prove a product formula for the behavior of this class under Whitney sum.

The first obstruction is the Euler class $\chi(\xi) \in H^n(B; Z)$. χ is a primary characteristic class and satisfies $\chi = j^*(U)$, where $j: B \to T$ is the inclusion into the Thom space and $U \in H^n(T; Z)$ is the Thom class. Whenever $\chi(\xi) = 0$, a secondary characteristic class

$$\alpha(\xi) \in H^{n+1}(B; \mathbb{Z}_2)/(\mathbb{S}q^2 + w_2 \smile) H^{n-1}(B; \mathbb{Z})$$

is defined. α is the second obstruction and satisfies

$$lpha = (Sq^2 + w_2 \smile)_j(U)$$
 .

Thus α is obtained by applying a twisted functional primary operation to U. The third obstruction $\gamma(\xi)$, defined whenever $\alpha(\xi) \equiv 0$, will be expressed as the value $\Phi_j(U)$ of a certain twisted functional secondary operation.

It is immediately plausible to consider as (n + 1)-ary characteristic classes the values of certain functional twisted *n*-ary operations on U, defined when appropriate *n*-ary characteristic classes vanish. We hope to deal with such classes systematically in a future paper, but the treatment is expected to be more complicated technically; hence $\gamma(\xi)$ is presented here as an illustrative example in a straightforward setting.

The paper is organized as follows. Section 2 is a statement of results, while in §3 we define $\gamma(\xi)$. The Peterson-Stein formula and the proof of (2.2) appears in §4; the product formula is obtained in §5. We conclude in §6 with an example.

Throughout the paper all cohomology is taken with Z_2 as coefficients unless otherwise indicated.

2. Statement of results. Suppose ξ is an SO(n)-bundle with n > 3 and suppose $\chi(\hat{\xi}) = 0$. Let

$$lpha(\xi) \in H^{n+1}(B)/(Sq^2 + w_2 \smile) H^{n-1}(B;Z)$$

be the secondary characteristic class given by $lpha(\xi)=(Sq^2+w_2\,{\smile})_j(U)$