A UNIFYING CONDITION FOR IMPLICATIONS AMONG THE AXIOMS OF CHOICE FOR FINITE SETS

MARTIN M. ZUCKERMAN

For $n \geq 1$, let $C(n)$ be the axiom of choice restricted to sets of *n*-element sets. We define a condition, (Z) , which is **sufficient to assure the provability of an implication**

 $(C(m_1) \& C(m_2) \& \cdots \& C(m_s)) \longrightarrow C(n)$

in set theory. We compare condition *(Z)* **with various other conditions related to the above implication.**

1. Notation and preliminaries. Let σ be the set theory of [3]; this is a set theory of the Gödel-Bernays type which permits the existence of urelemente (objects, other than the null set, which are in the domain, but not the range, of the ϵ -relation) and which does include the axiom of choice among its axioms. Our independence state ments will assume that σ is consistent; this is equivalent to the assumption that Godel's system A, B, C , of $[2]$, is consistent. Our logical framework is the first-order predicate calculus with identity.

By the nonnegative integers we mean the Von-Neumann integers, i.e., 0 is the empty set, $1 = \{0\}$, $2 = 1 \cup \{1\}$, $3 = 2 \cup \{2\}$, etc. For each such *n*, we let I_n be the set of all integers $\geq n$ and we let J_n be the relative complement of I_{n+1} in $I_1, I_1 \setminus I_{n+1}$. We let Π represent the set of prime numbers, and we let $II_n = II \cap I_n$.

If there is a function (which is itself a set) which maps the set *x* one-one onto the positive integer n, then *x* is called an *n-element set;* in this case we let $n(x)$ denote the unique integer *n* for which such a mapping exists.

DEFINITION 1. For $n \in I_1$ let $C(n)$ denote the following statement of set theory: "For every set *x* of ^-element sets there is a function *f* defined on *x* such that for each $y \in x$, $f(y) \in y$. The statements $C(n)$ are called the *axioms of choice for n-element sets* or simply the *axioms of choice for finite sets.*

For any set x let $\mathscr{P}(x)$ denote the power set of x and let $\mathscr{P}^*(x)$ designate the set consisting of 0 together with the set of all n -element subsets of x for $n \in I$. For $Z \in \mathcal{P}^*(I)$, let $C(Z)$ be the conjunction of the statements $C(z)$, $z \in Z$. Since a positive integer is not a subset of I_1 , no confusion will result from our usage of $C(n)$ instead of $C({n})$.

We shall be concerned with implications of the form

$$
(1) \t C(Z) \longrightarrow C(n)
$$