A CHARACTERIZATION OF THE LINEAR SETS SATISFYING HERZ'S CRITERION

HASKELL P. ROSENTHAL

Let E be a closed subset of T, the circle group, which we identify with the real numbers modulo 1. E is said to satisfy Herz's criterion (briefly, E satisfies (H)), if there exists an infinite set of positive integers N, such that

(*) for all integers j with $0 \le j < N$, each of the numbers j/N either belongs to E or is distant by at least 1/N from E.

The main theorem proved here, is that E satisfies (H) if and only if there exists a sequence of sets F_1, F_2, \cdots with $E = \bigcap_{i=1}^{\infty} F_i$ and positive integers $N_1 < N_2 < \cdots$ satisfying the following properties for all i:

(1) N_i divides N_{i+1} and $F_i \supset F_{i+1}$.

(2) F_i is a finite union of disjoint closed intervals each of whose end points is of the form j/N_i for some integer j.

(3) If for some integer $j, j/N_i \in F_i$, then $j/N_i \in F_{i+1}$.

The motivation for studying sets E satisfying (H) is the result of Herz (c.f. [1]) that all such sets satisfy spectral synthesis, and of course that the Cantor set is an example. (See also [2], Chapter IX).

Now suppose that $E = \bigcap_{i=1}^{\infty} F_i$, with F_i and N_i satisfying (1)-(3) for all *i*. It is then evident that *E* satisfies (*H*), since the numbers N_i will satisfy (*) for all *i*. Moreover, *E* is obtained by a sort of disection procedure. Indeed, F_{i+1} may be obtained from F_i by removing from certain of the closed intervals $[j/N_i, (j+1)/N_i]$ included in F_i , one or more open intervals of the form

$$\left(rac{l}{N_{i+1}}$$
 , $rac{q}{N_{i+1}}
ight)$

where $j/N_i \leq l/N_{i+1} < q/N_{i+1} \leq (j + 1)/N_i$.

The "only if" part of our main result is demonstrated following the proof of Theorem 4 below. The latter result is somewhat stronger than our main theorem, and enables us to show that certain sets fail to satisfy (*H*) (in particular, the symmetric sets of ratio ξ , where ξ is a rational number with $1/\xi$ unequal to an integer. (C.f. [2], pp. 13-15 for the definition of these sets).

§1. Preliminaries. We identify the points of T with [0, 1), where addition and subtraction are taken modulo 1. If x and y belong to T, then the distance between them, $\rho(x, y)$, is defined to be the distance from x-y to the closest integer on the real line. If E