AN INTERPOLATION PROBLEM FOR SUBALGEBRAS OF H^{∞}

E. A. HEARD AND J. H. WELLS

Let E be a closed subset of the unit circle $C = \{z : |z| = 1\}$ and denote by B_E the algebra of all functions which are bounded and continuous on the set $X = \{z : |z| \leq 1, z \notin E\}$ and analytic in the open disc $D = \{z : |z| < 1\}$. An interpolation set for B_{E} is a relatively closed subset S of X with the property that if α is a bounded and continuous function on S (all functions are complex-valued), there is a function f in B_E such that $f(z) = \alpha(z)$ for every $z \in S$. The main result of the paper characterizes the interpolation sets for B_E as those sets S for which $S \cap D$ is an interpolation set for H^{∞} and $S \cap (C-E)$ has Lebesgue measure 0. If, in addition, $S \cap D = \phi$ then S is a peak interpolation set for B_E . Also, through a construction process inspired by recent work of J. P. Kahane, it is shown that the existence of peak points for a sup norm algebra of continuous functions on a compact, connected space implies the existence of infinite interpolation sets relative to the algebra and certain of its weak extensions.

The solution of the interpolation problem in the space $H^{\infty} = B_c$ of bounded analytic functions on D is due to Lennart Carleson [5], and due to A. Beurling and Walter Rudin in the disc algebra $A = B_{\phi}$ [10]. Concerning the latter case see also the notes of Lennart Carleson [5] and the last problem in Hoffman's book [8]. Their results are given by the following two theorems.

THEOREM C. A sequence $\{z_k\}$ of distinct points in D is an interpolation set for H^{∞} if and only if it is uniformly separated¹, that is, if and only if there exists a positive number δ such that

(1)
$$\prod_{j=1: j \neq k}^{\infty} \left| \frac{z_j - z_k}{1 - \overline{z}_j z_k} \right| \geq \delta \qquad (k = 1, 2, \cdots) .$$

Whenever this condition holds, a constant $m(\delta)$ exists with the property that for any bounded sequence $\{w_k\}$ there is an f in H^{∞} such that $f(z_k) = w_k$ $(k = 1, 2, \cdots)$ and $||f|| \leq m(\delta) \sup_k |w_k|$.

THEOREM B-R. A closed subset S of \overline{D} is an interpolation set for A if and only if

(i) $S \cap D$ is uniformly separated,

¹ This terminology is due to Professor Peter Duren.