A RADON-NIKODYM THEOREM FOR VECTOR AND OPERATOR VALUED MEASURES

JORGE ALVAREZ DE ARAYA

The main result of this paper is a Radon-Nikodým theorem for measures taking values in a separable Hilbert space and on the bounded operators of such a space. The integral used for the representation is a Gelfand-Pettis integral, which in this case is also equivalent to the Bochner integral.

1.1. Basic definitions. We will consider the following objects: a measure space $(\Omega, \mathcal{A}, \mu)$, where \mathcal{A} is a σ -algebra of subsets of Ω and μ is a σ -finite nonnegative measure; a separable Hilbert space H and the space B(H) of bounded linear operators from H into H, and also the objects which we define below.

1.2. DEFINITION. By vector function and operator function we will understand functions defined on Ω and taking values in H and B(H) respectively. A vector function $x(\omega)$ is measurable if for each y in H, the function $(y, x(\omega))$ is measurable. An operator function $A(\omega)$ is measurable if for each x, y in H, the function $(A(\omega)x, y)$ is measurable. Obviously $A(\omega)$ is measurable if and only if $A(\omega)x$ is a measurable vector function for each x in H.

1.3. LEMMA. If $x(\omega)$ is a measurable vector function, then $||x(\omega)||$ is measurable. If $A(\omega)$ is a measurable operator function, then $||A(\omega)||$ is measurable.

Proof. Let $x(\omega)$ be measurable and let $\{e_1 e_2, \dots\}$ denote an orthonormal basis for H. Then $(x(\omega), e_n)$ is measurable for each n and so $||x(\omega)||^2 \sum_{n=1}^{\infty} |(x(\omega), e_n)|^2$ is measurable. Now let $A(\omega)$ be measurable and let S_0 be a countable dense subset of the unit ball in H. Then $||A(\omega)|| = \sup \{||A(\omega)x||: x \in S_0\}$ is measurable.

1.4. DEFINITION. A measurable vector function $x(\omega)$ is *integrable* if $||x(\omega)||$ is integrable (i.e., it belongs to $L_1(\mu)$). A measurable operator function $A(\omega)$ is *integrable* if $||A(\omega)||$ is integrable.

Let $x(\omega)$ be integrable and let $y \in H$. Then $|(y, x(\omega))| \leq ||y|| \cdot ||x(\omega)||$ and $(y, x(\omega))$ is integrable. $\int (y, x(\omega))d\mu(\omega)$ is a linear functional bounded by $\int ||x(\omega)|| d\mu(\omega)$ and there is a unique vector $z \in H$ such that $\int (y, x(\omega))d\mu(\omega) = (y, z)$. The vector z is by definition the integral