MATRICES WITH PRESCRIBED CHARACTERISTIC POLYNOMIAL AND A PRESCRIBED SUBMATRIX

GRACIANO N. DE OLIVEIRA

Let A be an arbitrary (complex) $n \times n$ matrix and let $f(\lambda)$ be a polynomial (with complex coefficients) of degree n+1 with leading coefficient $(-1)^{n+1}$. In this paper we solve the problem: under what conditions does there exist an $(n+1) \times (n+1)$ (complex) matrix B of which A is the submatrix standing in the top left-hand corner and such that $f(\lambda)$ is its characteristic polynomial?

In [1] Farahat and Ledermann proved that if A is a nonderogatory matrix over a field Φ and $f(\lambda)$ is a monic polynomial over Φ , then there exists an $(n+1)\times (n+1)$ matrix B over Φ with A standing in its top left-hand corner and such that $f(\lambda) = \det (\lambda E_{n+1} - B)$. Now, our main results are:

THEOREM 1. Let A be an $n \times n$ complex matrix whose distinct characteristic roots are w_{α} ($\alpha = 1, \dots, t$). Let us suppose that in the Jordan normal form of A, w_{α} appears in r_{α} distinct diagonal blocks of orders $v_1^{(\alpha)}, \dots, v_{r_{\alpha}}^{(\alpha)}$ respectively. We assume that

$$v_1^{(\alpha)} \leq \cdots \leq v_{r_{\alpha}}^{(\alpha)}$$
.

Let $\theta_{\alpha} = \sum_{j=1}^{r_{\alpha}-1} v_{j}^{(\alpha)}$. There exists an $(n+1) \times (n+1)$ complex matrix B having A in the top left-hand corner and with $f(\lambda)$ as characteristic polynomial (i.e., $f(\lambda) = \det (B - \lambda E_{n+1})$) if and only if $f(\lambda)$ is divisible by $\prod_{\alpha=1}^{r} (w_{\alpha} - \lambda)^{\theta_{\alpha}}$.

THEOREM 2. Let A be a real $n \times n$ symmetric matrix whose distinct characteristic roots are w_{α} ($\alpha = 1, \dots, t$). Let r_{α} be the multiplicity of w_{α} . There exists a real $(n+1) \times (n+1)$ symmetric matrix B having A in the top left-hand corner and with $f(\lambda)$ (now with real coefficients) as characteristic polynomial if and only if

(a)
$$f(\lambda)$$
 is divisible by $\prod_{\alpha=1}^{t} (w_{\alpha} - \lambda)^{r_{\alpha}-1}$

and

$$(\mathsf{b}) \qquad \left[\frac{f(\lambda)}{(w_\beta-\lambda)^{r_\beta-1}}\right]_{{\scriptscriptstyle{\lambda=\lambda_\beta}}} \boldsymbol{.} \qquad \prod\limits_{{\scriptscriptstyle{\alpha=1}\atop\alpha\neq\beta}}^t \; (w_\alpha-w_\beta)^{r_\alpha} \, (\beta=1,\,\cdots,\,t)$$

is real and nonpositive.

REMARK. There is no difficulty in seeing that the conditions (a)