ON THE DECOMPOSITION OF INFINITELY DIVISIBLE CHARACTERISTIC FUNCTIONS WITH CONTINUOUS POISSON SPECTRUM, II

ROGER CUPPENS

Let f be an infinitely divisible characteristic function whose spectral functions are absolutely continuous functions with almost everywhere continuous derivatives. Some necessary conditions that f belong to the class I_0 of the infinitely divisible characteristic functions without indecomposable factors have been obtained by Cramér, Shimizu and the author and a sufficient condition that f belong to I_0 has been given by Ostrovskiy. In the present work, we prove that the condition of Ostrovskiy is not only a sufficient, but also a necessary condition that f belong to I_0 .

Let f be the function of the variable t defined by

(1)
$$\log f(t) = \int_{-\infty}^{0} [e^{itu} - 1 - itu(1 + u^2)^{-1}]\varphi(u)du + \int_{0}^{\infty} [e^{itu} - 1 - itu(1 + u^2)^{-1}]\psi(u)du$$

where log means the branch of logarithm defined by continuity from $\log f(0) = 0$ and where φ and ψ are almost everywhere nonnegative and continuous functions which are defined respectively on $]-\infty$, 0[and $]0, +\infty$] and satisfy the condition

$$\int_{-\epsilon}^{0} u^2 arphi(u) du + \int_{0}^{\epsilon} u^2 \psi(u) du < +\infty$$

for any $\varepsilon > 0$. If we let

$$egin{aligned} M(x) &= \int_{-\infty}^x arphi(u) du & x < 0 ext{ ,} \ N(x) &= -\int_x^{+\infty} & \psi(u) du & x > 0 ext{ ,} \end{aligned}$$

then we see that the conditions of the Lévy representation theorem ([4], Th. 5.5.2) are satisfied, so that f is an infinitely divisible characteristic function. In [3], we have proved the following result.

If the two following conditions are satisfied:

(a)
$$\varphi(u) \ge k$$
 a.e. for $-c(1+2^{-n}) < u < -c$,

(b) $\psi(u) \ge k$ a.e. for $d < u < d(1 + 2^{-n})$,

where k, c and d are positive constants and n is a positive integer,