ON AN EMBEDDING PROPERTY OF GENERALIZED CARTER SUBGROUPS

EDWARD CLINE

If $\mathscr E$ and $\mathscr F$ are saturated formations, $\mathscr E$ is strongly contained in $\mathscr F$ (written $\mathscr E \ll \mathscr F$) if:

(1.1) For any solvable group G with \mathcal{C} -subgroup E, and \mathcal{F} -subgroup F, some conjugate of E is contained in F.

This paper is concerned with the problem : (1.2) Given \mathcal{E} , what saturated formations \mathcal{F} satisfy $\mathcal{E} \ll \mathcal{F}$?

The object of this paper is to prove two theorems. The first, Theorem 5.3, shows that if \mathscr{T} is a nonempty formation, and $\mathscr{C} = \{G \mid G/F(G) \in \mathscr{T}\}$. (F(G) is the Fitting subgroup of G), then any formation \mathscr{F} which strongly contains \mathscr{C} has essentially the same structure as \mathscr{C} in that there is a nonempty formation \mathscr{U} such that $\mathscr{F} = \{G \mid G/F(G) \in \mathscr{U}\}$. The second, Theorem 5.8, exhibits a large class of formations which are maximal in the partial ordering \ll . In particular, if \mathscr{N}^i denotes the formation of groups which have nilpotent length at most i, then \mathscr{N}^i is maximal in \ll . Since for $\mathscr{N} = \mathscr{N}^1$, the \mathscr{N} -subgroups of a solvable group G are the Carter subgroups, question (1.2) is settled for the Carter subgroups.

Since the theory of formations is of relatively recent origin, we give a few highlights. The theory begins with a paper [4] by Gaschütz which provides the setting in which the results of Carter [1] on the existence of nilpotent self-normalizing subgroups of solvable groups take their most natural form. He showed that given a saturated formation \mathcal{F} , and any finite solvable group G, one can find a conjugacy class of subgroups of G (called \mathcal{F} -subgroups of G) which is connected in a natural way with the formation \mathcal{F} . Recently, Carter and Hawkes [2] have made a major contribution to the theory by generalizing the work of Philip Hall on system normalizers in solvable groups to \mathcal{F} -normalizers, and investigating the relationships between the \mathcal{F} -subgroups of a solvable group G and the \mathcal{F} normalizers of G. As is clear from (1.1), this paper proceeds in a different direction by considering the relative embedding of the \mathcal{F} subgroups for two distinct saturated formations \mathcal{E} , \mathcal{F} . We consider only finite solvable groups in this paper.

The machinery used in the proof of our main theorem, Theorem 5.8, is developed in §4. We begin by obtaining a characterization of strong containment which depends only on the two formations \mathscr{C} and \mathscr{F} . This characterization depends on the knowledge that if \mathscr{F} is a saturated formation, then \mathscr{F} is a locally defined formation (see