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A NOTE ON THE THEORY OF PRIMES

J. E. SCHNEIDER

In this paper we find those commutative rings for which
the theory of primes is subsumed under classical ideal theory,
that is, for which every finite prime is an ideal. The charac-
terization is given in terms of domains with this property and
they are shown to form a class of domains from number theory.
In addition we give two characterizations of the primes of a
subring of a global field. The first establishes them as the
nontrivial preprimes whose complements are multiplicatively
closed and the second relates the space of all primes to that
of the quotient field.

The concept of a prime for commutative rings with identity
was introduced by Harrison in 1966.

In what follows all rings are commutative and have a unity and
all primes are finite. X(R) denotes the set of primes of a ring R and
Xf{R) denotes the set of valuation preprimes (preprimes T such that
for each finite EaR,TnE = 0 => there is PeX(R) with T c P and
P Π J B = 0 ) . For a preprime T of R which is closed under subtraction,
define the idealίzer A(T) of T in R by A(T) = {a e R: α Γ c T). A(T)
is a subring of R in which T is an ideal.

1. Call a ring a C-ring if every finite prime of it is an ideal.
It is easy to check that the class of C-rings is closed under taking
subrings and homomorphic images.

THEOREM 1. The following are equivalent for a ring R:
(1) R is a C-ring
( 2 ) X(R) = {maximal ideals of R]
(3) R/P is a C-ring, for each minimal prime ideal P of R;
(4) X\R) = SpecCR).

Proof. That (4) => (2) => (1) => (3) is clear. In any case,
Spec(i2) c X'(R) [1, Lemma 2.6]. Let P e X'(R). P contains a minimal
prime ideal Q of R and P/Q e X'(R/Q). Then P/Q is the intersection
of the primes of R/Q which contain it; so, if R/Q is a C-ring, then
P/Q e SpecCR/Q) and Pe Spec(β).

Because of condition (3), we turn to the classification of C-domains.
If S denotes the ring of rational integers or a ring of polynomials in
one variable over a finite field, then one checks that the polynomial
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