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THE BENDING OF SPACE CURVES INTO
PIECEWISE HELICAL CURVES

JAMES M. SLOSS

It is the purpose of this paper to show that a regular C?
space curve I’ in a Euclidean 3-space, whose curvature « + 0,
can be bent into a piecewise helix (i.e., a curve that is a helix
but for a finite number of corners) in such a way that the
piecewise helix remains within a tubular region about C of
arbitrarily small preassigned radius. Moreover, we shall show
that the bending can be carried out in such a way that either
(a) the piecewise helix is circular or (b) the piecewise helix
has the same curvature as I" at corresponding points except
possibly at corners, of (c¢) if the torsion of I” is nowhere zero,
then the piecewise helix has the same torsion as I” at corres-
ponding points except possibly at corners.

Also we shall show that if, in addition, I” has a bounded fourth
derivative, then an explicit formula can be given for a sufficient number
n of helices that make up the piecewise helix, where n depends on I’
and the radius of the tubular region about I". In this case, we shall
also show how the determination of the piecewise helix can be reduced
to a problem in simple integration.

1. Bendability.

DEFINITION 1. A curve is called a piecewise helix if it consists
of a finite number of segments, each of which is a helix (i.e., a curve
whose tangent makes a constant angle with a fixed direction). A point
at which two consecutive helices meet will be called a corner of the
piecewise helix.

REMARK. If, in particular, between corners the helix is a circular
helix, then the piecewise helix will be called a piecewise circular helix.

THEOREM 1. Let I': 7(s), s = arc length, 0 < s <, be a regular
C*l0, I]* curve whose curvature k(s) is nowhere zero. Then for any
given € >0

(a) there exists a piecewise circular helix I'}: hi(s), s = arc length,
0 <s<l, such that:

[r(s) — R¥(s)| < e, 0<s<1;

1 (I.e., 7(s) can be extended to lie in C® on some open set containing 0 < s < 1.)
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