THE BENDING OF SPACE CURVES INTO PIECEWISE HELICAL CURVES

JAMES M. SLOSS

It is the purpose of this paper to show that a regular C^3 space curve Γ in a Euclidean 3-space, whose curvature $\kappa \neq 0$, can be bent into a piecewise helix (i.e., a curve that is a helix but for a finite number of corners) in such a way that the piecewise helix remains within a tubular region about C of arbitrarily small preassigned radius. Moreover, we shall show that the bending can be carried out in such a way that either (a) the piecewise helix is circular or (b) the piecewise helix has the same curvature as Γ at corresponding points except possibly at corners, of (c) if the torsion of Γ is nowhere zero, then the piecewise helix has the same torsion as Γ at corresponding points except possibly at corners.

Also we shall show that if, in addition, Γ has a bounded fourth derivative, then an explicit formula can be given for a sufficient number n of helices that make up the piecewise helix, where n depends on Γ and the radius of the tubular region about Γ . In this case, we shall also show how the determination of the piecewise helix can be reduced to a problem in simple integration.

1. Bendability.

DEFINITION 1. A curve is called a *piecewise helix* if it consists of a finite number of segments, each of which is a helix (i.e., a curve whose tangent makes a constant angle with a fixed direction). A point at which two consecutive helices meet will be called a *corner* of the piecewise helix.

REMARK. If, in particular, between corners the helix is a circular helix, then the piecewise helix will be called a *piecewise circular helix*.

THEOREM 1. Let Γ : r(s), $s = arc \ length$, $0 \leq s \leq l$, be a regular $C^{s}[0, l]^{1}$ curve whose curvature $\kappa(s)$ is nowhere zero. Then for any given $\varepsilon > 0$

(a) there exists a piecewise circular helix Γ_1^* : $h_1^*(s)$, s = arc length, $0 \leq s \leq l$, such that:

$$|r(s) - h_{\scriptscriptstyle 1}^*(s)| < arepsilon$$
 , $0 \leq s \leq l$;

¹ (I.e., r(s) can be extended to lie in C^3 on some open set containing $0 \le s \le l$.)